

BIM EDUCATION - GLOBAL - 2022 UPDATE REPORT

ISSUE VERSION: V9.0 ISSUE DATE: May 2022

COMPILER: Tom Banh (NATSPEC) **CONTRIBUTORS**: See list at end of report

EXECUTIVE SUMMARY

In January 2014 NATSPEC issued the first version of a report summarising the status of BIM education in several countries and regions across the globe. The report has been updated and reissued each year since, with this report being version 9.0 of what is now an annual update to the original report.

Each year the countries and regions included in previous versions of the report are given the opportunity to update their section to reflect their current status of BIM education. In the updated versions since the original 2014 report, additional countries have provided input, expanding the scope of the original report. This ninth edition of the report includes information from 22 countries/regions. Argentina has contributed for the first time this year.

As reported in previous years, most countries/regions are reporting BIM education being provided to Architecture, Engineering and Construction (AEC) students through their higher education and technical training institutions (vocational education). Some countries/regions have also reported the incorporation of BIM into the relevant course curricula at secondary education institutions. At the undergraduate and post graduate levels, most countries/regions are reporting a significant volume of courses and subjects available. However, there has generally been a slower uptake of BIM in education institutions across Africa and Argentina.

In general, the number of courses being offered is not significantly increasing year on year. However, many countries/regions are reporting that the content of such courses are now being expanded to include more

sophisticated applications of BIM. Course content such as BIM for costing, FM, openBIM information exchange, BIM management, etc. are being taught to complement the change in industry focus from simple design modelling to the application of BIM for the whole building or infrastructure life cycle.

Virtual/online courses continued to be a widely offered teaching alternative as the effects of the global pandemic remained. This has given students the opportunity to access BIM education which otherwise may not have been possible.

As previously reported, many countries/regions either have BIM requirements or are considering BIM requirements for the award of new public projects at the federal or state and provincial levels. However, a lack of BIM standards, information standardisation and structured BIM educational coursework consistent across educational institutions have been reported as barriers to the widespread adoption of BIM on projects.

Many countries/regions continue to discuss the importance of the buildingSMART International Professional Certification program and how this is being implemented within their respective countries/regions. The practitioner level of this program is expected to be available in late 2022.

Other certification schemes that validate BIM knowledge continue to grow, with countries/regions such as Australia, Canada, China, Finland, France, Germany, Hong Kong, Norway, South Africa, Singapore, Switzerland, Taiwan, UK and USA having all reported the existence or development of such schemes. Moreover, accreditation of the BIM training programs provided by higher education institutions is also gathering pace.

INTRODUCTION

Question

In October 2013 Richard Choy (NATSPEC) sent an email to a global group of parties with an interest in BIM, asking for a brief paragraph outlining the current status of BIM education in each of their respective countries/regions.

This question was interpreted in two ways, with the respondents either describing the current level of BIM awareness/use or the current level of training/higher education available. Some respondents also provided a much more detailed response than a brief paragraph.

Original report

A report summarising the responses received was compiled by NATSPEC and issued in January 2014. The report only included countries/regions from which a response was received and was based purely on the responses provided. It did not attempt (or claim) to fully research and document the status of BIM education/awareness in each country/region.

Updated report

The report has been updated and reissued each year since, with this report being version 9.0 of what is now an annual update to the original report.

In the updated versions since the original 2014 report, additional countries have provided input, expanding the scope of the original report. This ninth edition of the report includes information for 22 countries/regions.

Early in 2022 NATSPEC again contacted the respondents who had contributed to the previous versions of the report, offering them the opportunity to update their information. Even with everyone having been impacted by the ongoing global pandemic, NATSPEC are pleased to report that the response to this year's update includes a new contribution from Argentina.

Where no response was received from a previous contributor, it was assumed that the status of BIM education in their country or region has remained unchanged.

This report again summarises the responses received. As per previous versions, this report is based purely on the responses provided; it does not attempt to fully research and document the status of BIM education/awareness in each country/region.

BIM EDUCATION - BY COUNTRY/REGION

AFRICA

Education/Training

There is broadly a slow uptake of BIM in education institutions across Africa. The major challenges are related to the inadequate knowledge and exposure to BIM of University lecturers influenced by a culture of resistance to change. The status of BIM Education in the 5 regions in Africa are summarised below.

West Africa: Discourse on BIM in education is more popular in Nigeria and Ghana than in other countries in the region. There are no full courses or programs specially for BIM in this region. However, BIM is being taught as topics within courses in some of the tertiary institutions. BIM-related topics are also now increasingly being undertaken as research projects by undergraduate and postgraduate students in these countries. Also, the use of BIM tools for design in training undergraduate students is gaining momentum against the use of the traditional approach for architectural and engineering disciplines. Over the years, there has been a growing number of organisations providing training for students, professionals, and firms in this region. The BIM Africa Initiative has been pushing for BIM curriculums and working closely with some tertiary institutions across the globe.

Southern Africa: More South African institutions are involved in BIM education than other institutions in the region. There has been ongoing discourse on the need for the institutions to be producing BIM compliant graduates in the South African AEC industry (for further information on the country of South Africa refer to the **South Africa** section of this report). The BIM Academy Africa has been engaging with some of these institutions in implementing BIM curriculum to the institution's core curriculum. The introduction of BIM tools to students has been on the increase through stand-alone or short courses. Similarly, there are student's research on BIMrelated topics at the undergraduate and postgraduate level in South Africa. BIM trainings are also provided for professionals through various bodies such as the African academy and BIM institute.

East Africa: The training of BIM in institutions across many Eastern African countries is still lagging. BIM education and training is mostly by software vendors and associations of built

environment professionals, with little overlapping effect and engagements in tertiary institutions. Kenya and Ethiopia are experiencing the highest level of industry conversations on BIM strategies in the region. This is largely driven by membership-based organisations such as the Ethiopian Construction and Project Management Institute as well as the Architectural Association of Kenya.

Central Africa: Countries across central Africa have very little to no engagement with BIM across both industry and education. While individual expertise may exist, there are no industry engagements or interactions. With the majority of the countries having French as the official language, knowledge sharing with other African regions is largely hindered. The BIM Africa Initiative is now focusing on various engagements in French to ensure knowledge transfer to the vast African populace who do not communicate in English.

North Africa: There is a high level of educational engagements across many North African countries. One of such is Egypt, with the highest level of publications and academic research on BIM across the continent. The introduction of an M.Sc. in Integrated Engineering Design Management (IEDM) at Cairo University also exemplifies the strong training and education engagements in the country. Tunisia, Morocco and Algeria also have various levels of educational engagement, which is broadly driven by industry expertise overlapping to tertiary institutions.

Initiatives/Organisations

There are many organisations and bodies pushing for the adoption and implementation of BIM across Africa, as follows:

BIM Africa: The BIM Africa initiative is a non-profit civil society organisation formed to enable and regulate the adoption and implementation of BIM in the AEC industry across Africa. The African-wide advocacy for BIM adoption and implementation is reinforced by extensive academic and market research programs, certification programs, round-table meetings, seminars and webinars, formulation of locally adapted standards, chapters, volunteering and professional development opportunities.

Monthly roundtable and #BIMTalks are hosted by the organisation featuring experts from across the globe and conversations on digital construction. The organisation also initiated the Student Advocacy Program, designed to create BIM awareness amongst students of tertiary Institutions in Africa.

In collaboration with BIMcommUNITYAfrica, the initiative hosted BIMHarambee. Africa, the longest virtual BIM conference in Africa featuring 42 Presentations and Case Studies, 6 Learning sessions, 5 Panel discussions, 6 Discussion Forums, 58 Speakers, 2881 Registrations, 3300 Views, and 436 hours watched.

The Research and Development Committee of the organisation produced the first continental-wide report on BIM in Africa which features the summary of findings from the Africa BIM Survey 2020. A project showcase consisting of carefully selected projects across the various regions in Africa that have implemented digital technologies with details of implementation, challenges and lessons learnt, and experts' opinion consisting of articles from notable authorities on the central theme of digital construction.

The R and D committee also provides research support for students (Undergraduate and postgraduate) working on BIM related projects. The committee is presently working towards fostering research collaboration and supervision between BIM academics of African descent and tertiary institutions across Africa.

BIM Institute: The BIM Institute is one of the early non-profit companies advocating for the adoption and implementation of BIM across Africa. The institute has been working on the South African National BIM Guide in a bid to align itself with international standards. It hosted the 'BIM BAM BOOM' workshop in Durban, South Africa in 2017 which focused on BIM implementation and BIM case studies. Also, the organisation encourages BIM implementation through BIM competitions for architects, designers, and students.

In January 2019, a book titled 'BIM – It's your move' was published by BIM institute founder, Vaughan Harris. The book discusses the introduction of common global standards and modus operandi of use showing how Africa stands to benefit. The book contributes to the extant knowledge of BIM in Africa and encourages professionals to reinvent themselves. The institute also founded the BIM Academy Africa in 2017 which has been providing various BIM courses for professionals and students.

BIM Community Africa: The BIM community began in 2018 to encourage BIM adoption

across the continent by providing information about technologies and solutions and allowing the community to choose what suited them and their context best. The organisation hosted the 'BIM unconference 2019' in Cape Town in collaboration with Aurecon and the University of Cape Town where issues surrounding collaboration, implementation of ISO, and BIM for FM were discussed passionately. In May 2020, the organisation started a BIM podcast that features information sharing, and conversations on BIM. Similarly, in collaboration with BIM Africa, the BIMHarambee. Africa conference was hosted. The conference was a month-long event that brought together BIM practitioners from related industries to learn, share knowledge, promote, and highlight BIM practices across the continents.

Awareness/Uptake

There has been an increase in the level of awareness and adoption of BIM across the African continent, though at a slow pace when compared to other continents of the world. The slow uptake of BIM in the African AEC industry could be related to the culture of the industry, lack of infrastructure, and lack of expertise. BIM Africa with collaboration from BIM practitioners and researchers across Africa produced the first African-wide report on BIM. The report provides the status of BIM on the continent and presents projects that have successfully implemented BIM.

The African BIM Report 2020 (ABR) had responses from 30 countries from all 5 regions on the continent. It is estimated that about 90% of the respondents are aware of BIM prior to participation in the survey. However, only 50% have implemented BIM at varying levels on their projects. In addition, BIM is becoming a buzzword among professionals, but the right knowledge and expertise of BIM are still lacking. Many have the wrong perception of what BIM connotes and there is often a misrepresentation of BIM in the AEC industry which is not peculiar to Africa.

The major challenges facing the adoption of BIM on the African continent are:

 Lack of experts and training: There is inadequate trained professionals in the industry, although organisations and academic institutions are proffering short term (trainings, conferences, and seminars) in lieu of long-term solutions (BIM compliant graduates).

- Lack of Government support for BIM: In most of the countries in Africa, there is largely a lack of government support for BIM. A few Government institutions are however formulating policies and strategies in Ethiopia, Morocco, and Egypt.
- Cost: The high cost of BIM implementation is still a major challenge in Africa where most of the firms are small and medium-sized enterprises (SMEs).
- Lack of contractual framework: Extant contractual frameworks are not in tandem with the technological pace which often makes the execution of BIM difficult
- No client demands: Although there is an increase in BIM awareness, this does not equate to BIM implementation on the continent. The government in most of the countries are the biggest client in the AEC industry and a lack of government support has a debilitating effect on the demand. There is a need for the government to be supportive of the BIM crusade in Africa.

ARGENTINA

Education/Training

BIM has not yet been a subject addressed by the official education plans; even as we lack precise information, we know that very few secondary technical education proposals include parametric modelling of buildings as part of the curricular plan.

Based on a survey carried out in 2020 by the SIBIM (BIM Implementation System, on which we will elaborate), it emerges that, only twelve – out of thirty-three universities in which the Architecture degree is taught - are offering some type of training linked to BIM, while the introduction of the subject in Civil Engineering careers is still lower.

The offering in universities is very varied, only the University of Buenos Aires offers a "Specialisation Career in BIM" with an official title. This lasts two years and has been taught since 2017. As a direct antecedent, there was a one-year postgraduate course taught from 2013 until the specialisation career was approved. Since then, there has been a growing demand for the degree, which demonstrates the increased interest on the part of the country's youngest professionals on BIM issues.

Other postgraduate training options available are: Integration and collaboration in architecture projects (Universidad del Litoral), Introduction to BIM Systems (Universidad Nacional de Tucumán), Collaborative BIM Processes (National University of San Juan), Diploma in digital technologies for Architecture (National University of Córdoba), Diploma in BIM implementation in works (Agreement between the National Technological University and the School of Management of the Argentine Chamber of Construction) and the executive program of "Higher Training in BIM" (University of Palermo).

BIM training, at the undergraduate level, has been growing slowly and almost exclusively based on the personal initiatives of some professors who have the freedom to propose content for their undergraduate subjects (generally optional).

We have surveyed eighteen different courses (sixteen for Architecture and two for Civil Engineering), in twelve universities. Only one of these courses (the one at the University of Avellaneda) is included in the curriculum as a compulsory subject. In any case, the elective courses receive a large number of students since the interest in learning parametric modelling of buildings is also very high among our students.

Finally, we have also surveyed a dozen extracurricular courses taught at universities that have been affected by the pandemic situation during the last two years, during which they had to compete with a large amount of free content on social networks and the Internet.

Initiatives/Organisations

Since 2013, the BIM FADU Academic Conference (Faculty of Architecture, Design and Urbanism of the University of Buenos Aires) has been held every year, with the participation of professors and professionals from all over the country with the aim of disseminating the BIM methodology from the academy and towards all the productive sectors of the AEC Industry.

In 2016, from the awareness of various professionals and institutions in recognising the historical moment that the AEC industry is going through in Argentina and the opportunities offered by BIM in our context, the "BIM Forum of Argentina" was created, to become the organisation that leads the transformation of AEC processes for the generation of economic, environmental and social benefits derived from the implementation of BIM.

In 2019, from the Ministry of Public Works, the SIBIM (BIM Implementation System) was founded, a team of professionals who work on the definitions that will allow the contracting of public works using the BIM methodology. The SIBIM has drafted a large number of documents that have been vital for the first experiences of BIM tenders carried out by the provinces of San Juan and Mendoza with the support of the SIBIM professional team.

That same year, the SIBIM organised the first meetings of the BGP (BIM Public Management) roundtable, a consensus space made up of representatives of the national, provincial, municipal and academic public sectors, which aims to promote the digital transformation of the public construction sector through BIM.

The BGP-table is organised into several working groups, currently the "Training Working Group" is drafting a "BIM Guide for students" in order to unify the basic criteria in all educational institutions in the country that wish to align under a general criteria.

Since 2020, the IRAM Institute (Argentine Institute for Standardisation and Certification) has been working on the translation of the ISO-19.650 series, having concluded part 1 and is close to releasing a version of part 2 for public discussion.

AUSTRALIA

Education/Training

There are 43 universities in Australia. Of these, 24 institutions claim to have a noteworthy uptake of BIM in their programs. BIM education in these institutions is included across a wide range of courses and schools/faculties. This includes the Faculty of Science, Engineering and Built Environment at Deakin; School of Built Environment at QUT; School of Natural and Built Environments at UniSA; Department of Civil and Construction Engineering at Swinburne University of Technology; Bond University; and the Faculty of Engineering and IT and Faculty of Architecture, Building and Planning at the University of Melbourne, among others.

BIM education, however, transcends the higher education sector and has been extended to vocational education and training institutions. A large part of BIM training and education occurs in industry by various training institutions, with various training and education subjects related to BIM also currently presented by Technical and Further Education (TAFE) colleges. Many TAFE colleges are providing courses where BIM is incorporated into the syllabus, and short courses related to BIM. As an example, in Western Australia, South Metropolitan TAFE runs a short course titled 'Civil Construction - Structural Design, Model and Drafting skill set';

Box Hill Institute of Victoria provides Advanced Diploma in BIM along with several BIM-related short courses. Other professional institutes like buildingSMART Australasia (bSA) have also been active in BIM education. As a major development, bSA has launched the BIMcreds program, in the form of an online assessment process- for BIM and DE professionals.

At present, most Australian universities include BIM within their courses, in the form of BIMspecific subjects or as a part of other subjects within – their curricula. In total, 76 courses across the 24 institutions have incorporated BIM-related subjects in their curricula. These courses are presented across various levels as defined by the Australian Qualification Level (AQF) framework (level 6 to level 9). Along with those, 6 BIM-related short courses are also available for design and engineering consultancy, construction and trades, facilities managers, project managers and many other related professions. For example, a short course in Revit Architecture for 2D and 3D modelling is offered in Victoria University.

The rate of BIM integration hence shows outstanding progress, despite the challenges of the global pandemic in 2020. The Federal Government's higher education relief package has supported some universities to introduce a new range of courses in study areas that align with national priorities and feed into highdemand industries. Under this scheme. University of Western Australia offers an online course titled as 'Graduate Diploma in Building Information Modelling'; University of South Australia offers 4th year BIM courses; Deakin university created a new Graduate Certificate of Construction Management where BIM is considered as one of four units; and Bond University offers BIM micro credential subjects leading to a Certificate of BIM/IPD.

In the majority of BIM subjects, currently offered at Australian universities, students are introduced to BIM authoring tools, mostly from the Autodesk Suite of BIM tools. They develop skills in using 3D modelling tools, and analyse data from 3D models for basic scheduling and cost estimation tasks. BIM courses offered by Western Sydney University cover design authoring, energy simulation, coordination, model validation and disciplinary model coordination.

Out of all the BIM-related subjects taught in universities, BIM documentation (80%) and 3D modelling (77%) are the most popular areas of BIM training offered to students. The assessment tasks of these subjects require students to apply their BIM knowledge to create simple BIM models of real-life projects. They are asked to develop 3D models and integrate BIM models with the time dimension to generate 4D, grasp 5D BIM via cost integrated modelling and produce technical clash detection reports. There are reports of applying collaboration tools like Revizto, BIM 360, Aconex and Procore in teaching collaborative problem solving in BIM subjects. All subjects employ a combination of different teaching delivery modes, including lectures and classes to teach theoretical and fundamental features, computer lab sessions and group activities for skill development in using tools and practical know-how of BIM tools, and ad hoc workshops on specific areas like BIM standards and specific software packages.

With the emergence of Digital Engineering (DE) in Australia, some institutions, have moved towards defining subjects that incorporate the fundamental aspects of DE. Examples are Swinburne University of

Technology with training on the use of Virtual Reality (VR) and Augmented Reality (AR) for communication purposes (Unit: Driving collaboration in projects); Western Sydney University announcing training on DE, Blockchain, Artificial Intelligence and modern construction enterprises (Unit: Smart construction); and UNSW similarly offering advanced topics like Human-machine interaction and Advanced digital fabrication — in the Unit Design information management. In Monash University, BIM-related training is provided in the undergraduate civil engineering and the Master of Professional Engineering courses.

Despite the promising outlook and these developments, such efforts are still in their infancy. BIM education at Australian universities should be evolved into one of incorporating various dimensions of DE with the elements below incorporated into the AEC-related curricula:

- BIM integration with other advanced methodologies like VR, AR, laser scanning and Internet of Things (IoT), digital twins.
- Procedures and tools for data extraction from BIM models and analyses of such data.
- Defining assessment tasks in the form of multidisciplinary projects with students participating from various schools, faculties fields of study beyond AEC.
- Management of data and information across the entire supply change of built assets.
- Contractual aspects associated with BIM and DE. This must entail linking smart contracts and Blockchain technology with BIM implementation efforts.

Apart from the above gaps to be filled, early findings of research studies indicate that BIM education in Australian universities needs to include recent standards for information management, such as the AS ISO 19650 series. Competency in using these standards is much needed in the Australian AEC industry. This is currently an overlooked area and one which has received scant attention from BIM educators in Australian universities. Information management is embedded in Bond university's BIM/IPD degree, more specifically at the Master's level.

Of all the higher education institutions active in BIM education, most of them offer no

independent degree in BIM. However, 21% have independent degrees in BIM or offer BIM as a specialisation or major within the list of their programs.

Universities offer BIM education in the form of 76 different courses, which include 8 BIMfocused courses. The remaining are subjects not related to BIM – into which various dimensions of BIM are integrated. A total of 102 BIM related subjects are on offer as part of these 76 courses. However, only 5 universities out of 24 – offer BIM specific courses/programs at undergraduate and postgraduate levels. For example, Bond University and the University of Western Australia offer Master, Graduate diploma and Graduate certificates in Building Information Modelling and the University of Canberra, University of Melbourne, and Swinburne University offer a Major in specialisation courses in BIM at the undergraduate level. These, on some occasions, are offered as a part of other degrees. For example, Swinburne University of Technology planned to offer a BIM specialisation core unit from 2021, but later, this course transformed to a diploma with two out of eight units BIM related. It is a government funded 'higher apprenticeship' model, associated with Victoria's Big Build where students are in the work force, committed to Big Build projects.

In general, Australian universities take the three approaches discussed below when offering BIM education.

Approach 1: Refers to presenting subjects defined as standalone BIM units of study. Universities adopting this approach account for 50% of universities - 12 universities out of 24. The content of these standalone units might be different to cover the different dimensions of BIM, in different universities. For example, the University of Melbourne offers standalone subjects in Building Information 'Modelling' and 'Management'; Deakin University offers Principles of Building Information Modelling; Bond University offers Building Information Modelling and Integrated Project Delivery; Curtin University offers standalone BIM subjects in Building Information Management; and the University of Western Sydney now have a new unit which is dedicated to BIM and digital technologies for construction. At Western Sydney University, a new unit -Digital Construction – is on offer, allocated to BIM and digital technologies in construction, for second year students in bachelor or construction management honours degree. The University of Melbourne now offers Micro

certificates in BIM through the Faculty of Engineering and IT.

Approach 2: Refers to defining subjects that offer BIM-related training. Though BIM content is included in them, their titles and the focus of these subjects vary greatly across the various institutions. As an example, Deakin University delivers planning and scheduling subjects with 4D BIM among the syllabus. In the University of South Australia, BIM for building code checking (building surveying) has been taught since 2018, utilising Autodesk Navisworks in Integrated Project (4th year subject), with 4D and 5D BIM being taught too. At the University of Melbourne. BIM is incorporated in Construction Measurement. The Digital Construction unit at the University of New South Wales; and Queensland University Technology with the Advanced Building Documentation unit, all fall within this category. Subjects such as Intellectual property rights (Data Exchange) at Bond University are devoted to Micro-credential courses adopting the buildingSMART Australasia BIM framework. So too, in RMIT University, BIM is included within budgeting and scheduling subjects. The University of Canberra introduced BIM in the subject Interior Architecture Technology 3: Systems. So too, BIM has been introduced in a wide range of subjects like building services, design team management and integrated technology. At Western Sydney University, the Building Design Process and Smart Construction units are, for the most part, focussed on BIM processes and tools for design, construction and operation.

Approach 3: Refers to the combination of Approaches 1 and 2. To date, this approach is not common in Australian universities. This represents another gap in BIM education across Australian universities, given that, according to research studies, the third approach is the most effective one in equipping students with BIM-related knowledge and skills, before graduation. Bond University introduced micro-credential Intellectual Property Rights within the BIM degree, which is further developed for students who continue to a Master of BIM/IPD. Apart from the BIM degree at Bond, these topics are touched on in Architecture, Construction Management and in Quantity Surveying. All 8 micro-credential subjects are available to undergraduate and postgraduate learners in AEC, planning and property students. The remaining 4 masters subjects are available to

postgraduate learners as electives for Masters students from compatible degrees. However, pre-requisite knowledge of BIM management and technology is required.

In late 2019, the Australian BIM Academic Forum (ABAF), conducted a survey of all Australian universities active in BIM education, to provide an updated picture of the landscape of BIM education in Australia. The report, provides details of the current practices of BIM education and the various approaches for delivering BIM programs across Australian universities. The ABAF also ran interviews as part of the 2019 survey with experienced BIM educators. The outcome of the study revealed that despite the active shift towards including BIM into the curricula at Australian universities, several barriers hinder the effective integration of BIM into the courses across higher education in Australia. Findings identify four primary barriers to BIM education. These are:

- Issues related to the challenges of change management for revolutionising courses. That is, Australian universities still do not treat BIM/DE as an essential element of their programs. As a result, the commitment to change and allocation of resources to developing and improving BIM/DE-related subjects is missing at many institutions.
- Curriculum and content, where there is little space for BIM within the crowded existing programs. Changing the existing content requires much effort and is seen as demanding job for BIM champions.
- Educators with inadequate skill and knowledge of BIM. Many subjects and units have been taught in traditional ways for many years. Educators find it a demanding and difficult task to update the content and learn the skills for using BIM in such subjects. Moreover, there is no time and workload allocated to this for educators.
- Lack of involvement of the industry and government in directing BIM education. Though this has changed in recent years, industry is still too busy and cannot effectively engage in developing content for Australian universities. Besides, universities have not succeeded in securing government support, and have failed in participating in a broader collaborative cultural shift across all higher education institutions in Australia. There is much room for strengthening industry connections,

where universities acknowledge the importance of BIM/DE education and allocate resources and time to their staff members to develop BIM skills. There is a knowledge gap in the university sector about what BIM/DE actually is, particularly at the executive levels, hence the barriers to cultural shift.

NATSPEC has also been providing an *Introduction to BIM* presentation to undergraduate students at universities across Australia for the past 9 years.

NATSPEC also provides industry seminars on the use of the NATSPEC BIM Project Inception Guide, NATSPEC National BIM Guide, NATSPEC BIM Management Plan, the NATSPEC BIM Object Properties Generator and the Open BIM Object Standard (OBOS).

A study conducted in 2021 highlighted the gap between what universities offer and what the industry needs. The study provided insight into the shortfalls of the current approach and offered recommendations for bridging the gap between university education and industry demands from graduates. Currently, the graduates' "ability" is limited to the recognition of BIM as a product. However, employers expect graduates to demonstrate both software skills and to have the capability to implement and engage with BIM as a process. Moreover, graduates appear to be significantly deficient in BIM protocols, collaboration and coordination, information workflows, and completion and handover procedures. Based on the identified mismatch between graduates' ability and employers' demand, and the recommendation collected from employers to improve BIM education, a novel version of "Tshaped BIM professional," was presented. That is, a professional with a depth of knowledge in their area of expertise with the capability of expanding their breadth of knowledge across other skills or disciplines. The proposed framework is to be taken as the intended learning outcomes (ILOs) that inform improvements in university BIM education curriculum.

Studies of this nature are needed to provide a sound theoretical basis for informing curriculum developments and in particular, prescribing remedial solutions for addressing current deficiencies in BIM-related education in the domain of pedagogical strategies. In practical terms, the implementation of the "T-shaped BIM professional" can be expected to minimise the gap between curricula and

industry practice. In so doing, this would enhance graduates' BIM-related Work Readiness (BWR) resulting in students graduating with BIM competencies better suited to industry expectations and practice.

Initiatives/Organisations

The BIM ecosystem landscape, and in turn BIM education and training, are constantly evolving in Australia. The most noteworthy development is associated with the emergence of the concept of DE, which has become the main target of all organisations and initiatives active in digitalising the Australian built environment.

Recognising these developments and given the sheer size of investment in infrastructure projects in Australia, in November 2016, the Transport and Infrastructure Council endorsed the National Digital Engineering Policy Principles.

Transport for NSW (TfNSW) has, however, acted as the driving force behind promoting the adoption of DE in Australia, to maximise quality and efficiency in delivering transport projects. TfNSW has also led the National DE Working Group with senior membership from governments across Australia, as a federally sponsored group established to lead the way towards a consistent national approach to DE for transport infrastructure.

The DE journey in Australia, however, dates back to 2014, when TfNSW started a consultation schema with industry experts and major stakeholders. This was the outcome of establishing a BIM/DE working group in TfNSW, in 2012. In 2017, TfNSW released the Data and Information Asset Management Policy that formally recognises the value and critical importance of structured data. The DE Framework Program – a fully funded program - has been running since 2017, with the aim of bringing together experts from around Australia to develop practical, cost effective DE solutions based on global best practices. The outcomes have resulted in the evolution and release of consecutive versions of DE Framework: Release 1 (Sept 18), DE Framework Release 2 (Apr 19) and Release 3 (Nov 2019). The second stage of the DE Framework development commenced in October 2020. In developing BIM training and education subjects, educators need to consider that currently, state governments in Australia, as well as the private sector, have recognised the great potential provided by DE in improving various facets of delivering and managing buildings, infrastructure assets and networks. This is reflected in the release of

various versions of the Digital Engineering Framework by TfNSW; the Victorian Digital Asset Strategy (VDAS) and the combined set of VDAS Guidance Parts A. B and C: and Principles for BIM Implementation in Queensland, among other DE-related initiatives across other states and territories. The release of these documents and the ensuing efforts to ramp up DE education across Australia highlight the need for revisiting BIM training at Australian universities and the necessity of preparing students with the capability of using data and information as a crucial resource in construction projects. In light of the limited time and resources to educate students, there must be less focus on enhancing the technical skills of students in using various tools in future BIM training across various Australian universities.

In September 2018, representative Australian universities announced the formation of the ABAF, to promote the academic aspects of BIM, driven by the growing BIM skill demands from the industry. The objective of the group is to gain higher and consistent levels of student competence in BIM in tertiary education in Australia, through raising BIM-related curricula standards and promoting research-informed BIM education.

With the emergence of DE in Australia, the aims and objectives of ABAF have evolved to address the requirements of DE adoption in updating the current BIM-related curricula for Australian universities.

As a result, ABAF supports the demand for BIM-ready graduates who go beyond dealing with BIM as a point solution and focus on effective management of data and information across wider generic construction fields and disciplines to cover the whole lifecycle of assets. Besides, ABAF recognises the need that BIM issues must become appealing to academic disciplines outside the built environment. The mission of ABAF is to:

- Foster integrated collaborative efforts for enhancing the quality and consistency of BIM-related curricula.
- Create a dynamic collaborative group to enhance and promote teaching, education, learning and research, linking the research and teaching aspects of BIM.
- Develop minimum requirements for BIMrelated curricula, with the objective of bridging the gap between BIM university education outcomes and workplace performance requirements.

- Provide a collective voice to contribute to policy issues, funding priorities and agenda setting.
- Establish an open medium for communication across tertiary education in Australia, thus, facilitating the sharing of knowledge; experience; case studies; views, etc.
- Collaborate for joint learning-based activities, competitions, games and research projects, both in Australia and internationally.

Another major player in the education domain is buildingSMART. Its National BIM Initiative – report to Federal Government (2012) identified 6 key areas in need of attention to drive the construction industry forward and facilitate broadscale BIM adoption. Chief among all was the crucial role of attention to multi-disciplinary BIM education. In recent years, therefore, buildingSMART Australasia has joined the training and education movement in Australia by introducing the BIMcreds initiative that offers a mechanism for assessing competency in BIM and DE. BIMcreds has recently been integrated into the bSI Professional Certification - Foundation (PCERT) Program which provides a global benchmark for openBIM competency assessment.

In 2019, buildingSMART Australasia officially started accrediting three postgraduate university programs in BIM and Integrated Project Delivery (IPD) offered by Bond University, as the first of its kind. This is seen as an effective measure towards closer engagement of the industry in developing and evaluating BIM-related training at Australian universities. Apart from the Masters degree at Bond University, students also undertake a 14 week capstone BIM applied research project in their final term with a BIM industry partner. Currently there are 3 PhD researchers covering the topics of digital twining. environmental assessment for refurbishment, and scan to BIM process framework. Bond University also offers a full scholarship for a PhD in BIM research through the Center for Comparative Construction Research.

Other key players include the Australasian Procurement and Construction Council (APCC) and the Australian Construction Industry Forum (ACIF). They jointly published the *Framework for the Adoption of Project Team Integration (PTI) and BIM* at the end of 2014. Education and training is a key theme of this framework.

As a result, APCC and ACIF established a BIM education working group to develop a framework and objectives for training providers. This was released early in 2017 and titled *BIM Education and Skills Framework*. In essence, the BIMcreds knowledge testing tool, as discussed above, has been developed by buildingSMART to compliment the APCC/ACIF framework.

The Australasian BIM Advisory Board (ABAB) was founded in 2016 by APCC and ACIF, together with the key standard-setting bodies, NATSPEC, buildingSMART and Standards Australia, to promote best practice and consistent approaches to BIM standards, requirements and methodologies.

The Board links industry leaders and expertise from government, industry and academia. ABAB have published four documents:

- BIM Process Consistency: Towards a Common Framework for Digital design, Construction and Operation.
- Asset Information Requirements Guide
 Information required for the operation and maintenance of an asset.
- Digital Twins Position Paper.
- Australian BIM and Digital Engineering Education – Position Paper.

Awareness/Uptake

BIM is being widely used on projects in Australia and by Australian consultants working on overseas projects. The use of BIM for FM/operations/maintenance is occurring on more and more projects across Australia. Examples are large-sized projects like the Opera House, Pyrmont Bridge, and Sydney Metro Northwest in Sydney. The trend of BIM use is not limited to large capital cities, as the same trend can be observed across all states and territories. Many projects in South Australia and Western Australia are associated with mature levels of BIM use. High-profile infrastructure projects like the New Royal Adelaide Hospital and Perth Children's Hospital Project are among these. BIM is also trickling down to smaller consultants and smaller projects; it is in fact seen as the new

The widespread growth of BIM among practitioners provides educators with ample opportunities. That is, universities can rely on experienced practitioners in the industry to deliver specific subjects of BIM. This can address many barriers that thwart BIM education by Australian universities, as discussed above under the four primary

barriers to BIM education found from the 2019 ABAF survey.

The NATSPEC National BIM Guide and BIM Management Plan have recently been updated to align with the AS ISO 19650 series and are being increasingly adopted across industry and government both as a framework for building projects as well as within education programs. BIM object creation tools such as the NATSPEC BIM Properties Generator and the Open BIM Object Standard (OBOS) are also both being used.

The NATSPEC BIM website, accessed by clicking on the BIM logo on the NATSPEC homepage (www.natspec.com.au), is a useful resource for general information on BIM, BIM R&D projects and the numerous BIM guidelines that are available.

The NATSPEC BIM documents are specifically referenced in QLD, NSW and VIC BIM policy documents. Considering the breadth of important stakeholders NATSPEC represents, the NATSPEC BIM documents remain the most accepted, widely used set of BIM guidelines in Australia.

CANADA

Education/Training

The number of colleges and universities offering BIM programs in the last couple of years has increased in Canada, both at the undergraduate and graduate levels, in Engineering and Architecture departments. This is in addition to the numerous BIM courses offered by continuing education departments at many institutions.

As well, private initiatives are offering online and face to face training sessions on subjects ranging from collaboration to execution plans to a specific BIM subject matter. Several construction associations have also launched their own training programs, focusing on their perspective.

The goal of the buildingSMART Canada (bSC) and Canada BIM Council (CanBIM) Education Committee is to support and aid the development of BIM educational initiatives in Canada, to ensure that a consistent and relevant BIM education and training landscape responds to, meets, and is relevant to the realities of an ever-evolving industry.

In a focussed effort to enrich the Canadian BIM-ecosystem, the CanBIM Professional Certification Program was launched in 2014, with the intention of understanding BIM-related skills and knowledge as well as professional competencies and capabilities in the AEC industry, in order to provide a point-ofreference and benchmarking to inform educational and training objectives. This program spawned the emergence of the CanBIM Foundations Certification Program which, through the establishing of course and program outcomes, assists educational institutions in aligning curriculum in response to industry needs and expectations. To date, the CanBIM Foundations Certification Program has certified upwards of 30 national and international BIM-related courses or programs.

A further goal of the bSC/CanBIM Education Committee is to provide a national and international benchmark for openBIM training.

Initiatives/Organisations

bSI Professional Certification Program bSC launched its Professional Certification program across the country in 2020, with several training providers.

Formerly known as Qualification Program, this program will attest to the knowledge of the

candidates through an online test provided by buildingSMART International (bSI).

The aim of the program is to provide standard essential knowledge of Open BIM and data management. It provides clear standards and promotes quality training by supporting and accrediting training content that meets a defined body of knowledge.

Most importantly, it provides the standards upon which training organisations can develop their course content. This structure ensures fundamental knowledge is acquired and it allows for a uniform online testing certification for individuals. It will therefore guarantee a benchmarked level of knowledge across the country and the world.

bSC also relays information about the COBie certification offered by bSI.

The international scope of these programs is complementary to CanBIM's certification program at the national level.

The buildingSMART Program is a proof of competence for professionals working with BIM. Certified professionals can demonstrate their knowledge is consistent with international standards and best practices.

Practice Manual

The Canadian Practice Manual for BIM was launched in 2017 and continues to provide direction on the application of BIM practices and processes in Canada. It is being used to develop Module 6 of the Learning Outcome Framework. The practice manual is multi-disciplinary, multi-volume and is a comprehensive guide that reflects both international best practice as well as the use of BIM in Canada. It builds on the Roadmap to deliver value to industry.

CanBIM Certification

The CanBIM Certification Program continues to be well supported. It was launched in 2014 with the objective of bridging BIM education and the AEC industry's implementation and use of BIM through the pursuit of excellence in certification. The pillars of the CanBIM Certification Program are:

- Professional Certification: A tiered, fourlevel certification program for BIM
 Professionals assessing knowledge, skill and professional workplace experience.
- Foundations Certification: Assessment and certification of courses and/or programs offered by:
 - . Educational Institutions both private and public.

- . AEC industry training providers for industry professionals.
- Company/Organisation Certification: Assessment and certification of BIMenabled companies and organisations.
- Provision of guidelines for a Continued Professional Development framework for certified individuals.

Satellite Sessions

These sessions are a joint event where CanBIM/bSC, Industry partners and Academia present on relevant topics within the host region. These events are intended to bridge the gap and unite the interests between Academia and Industry. The host Academic Institution has the opportunity to highlight its BIM related programs, a student from the host school is invited to present a BIM-relevant topic and the remainder of the agenda is filled out with Industry leaders from the host region. It is an opportunity to educate and connect all stakeholders over the course of an evening, while also showcasing the latest developments of the educational institutions across Canada.

Student Affiliate Memberships

CanBIM/bSC now have 20 Post-Secondary Education Institutions in its Membership. As a CanBIM/bSC Member, Educational Institutions can offer FREE Student Affiliate Membership to all their students. The Student Affiliate Membership opens up opportunities for Students to engage with industry leaders across Canada and globally. Students can participate on and engage with one of the following nine CanBIM/bSC Committees:

- Technology Committee.
- General Contractors Committee.
- Trades Committee.
- Designers Committee.
- Owners Committee.
- Education, Research & Certification Committee.
- International Committee.
- Legal Committee.
- Marketing Committee.

Students are asked to participate in a monthly call to help keep the Committees organised through meeting minutes and agenda creation and dissemination. Students are also asked to participate in working on various industry-based tasks giving them direct exposure to the challenges facing our discipline-based Committees. Further to the CanBIM/bSC Committees, students are continuing to engage as volunteers at the CanBIM/bSC

Regional and Satellite Sessions. This is a great networking opportunity to be at an event meeting the industry leaders and learning from the many presentations and panel discussions about the most relevant subject matter.

Student Connect: An Online Networking Platform

Student Connect is an online portal hosted on the CanBIM/bSC Website. This portal allows students to log in and explore industry-based research opportunities made available by CanBIM/bSC Members.

These research opportunities are posted within the portal by CanBIM/bSC Member companies looking to investigate the value proposition for market ready technologies. Students volunteer or apply to be hired, as research interns, to help deliver on the research goals around the technology or project.

Additionally, CanBIM/bSC offer functionality within the same portal for Students to upload a profile and store information and documents relating to their background and experience. This is a place where students and employers can connect for the purpose of research and or potential employment opportunities.

CanBIM/bSC are working to create opportunities to deliver significant value for Students, Educational Institutions and its Industry Members.

Awareness/Uptake

Jurisdictions have taken an interest in implementing BIM practices and requirements in official policies and public contracts. It is the case both at the federal and provincial levels, with Quebec, Ontario and Alberta as the main players.

The federal government is now considering whether to mandate or encourage BIM processes in public procurement procedures and is currently polling industry players.

Other important progress has been made in Quebec, where an industrial cluster was put in place to unite the value chain stakeholders and provide a forum with a plan to encourage best practices with regards to digital processes. This cluster brings together professional associations of architects, engineers, contractors and unions which have highlighted that education institutions at all levels must integrate digital practice and collaboration. One key focus is to better train workers and professionals to be able to master collaboration tools and practices with regards to data management in a life cycle management perspective.

CHILE

Education/Training

The survey that Planbim conducts every year in academic programs related to the AEC industry has demonstrated the progress of the teaching of BIM methodology at all academic levels, from school to postgraduate studies. According to the data collected in 2021, at the university level, of the 127 programs that responded to the survey, 83.5% (106 programs) teach BIM, which is a noticeable increase compared to the 52% that existed in 2016, the year when this study was first conducted. The analysis of this data was compiled in the Observatory carried out by Planbim on the integration and updating of BIM content in undergraduate programs, which was published in April of this year.

Meanwhile, in the case of institutes and of technical education centers, the numbers are encouraging and show a significant increase: in 2016 only 12.5% of the programs that participated in the survey were teaching BIM, and by 2021 this number increased to 79.7% of the 345 programs that responded to the survey.

At the graduate level, BIM programs have also significantly increased. Postgraduate Diplomas, for example, have grown from 9 programs in 2016 to 22 in 2021, which translates into an increase of 144%. Likewise, the master's and doctoral programs that have incorporated BIM in their curriculum increased from 1 to 15.

Meanwhile, at the school stage, the e+bim initiative stands out. Led by Planbim and the Ministry of Education - with the support of professional associations, private companies, and academic institutions, e+bim has made it possible to train high school teachers and students in different regions of the country. This program is imparted in annual cycles and begins in the summer period with the training of teams of teachers and students from different technical schools. Then, during the academic year, teachers include the acquired knowledge into their study plans. Finally, after the first two phases, some of the students apply for internships in renowned architecture, engineering, and construction companies. These internships are directly managed by Planbim and allow students to continue learning through the practical application of BIM in real projects.

Additionally, in line with the objectives set by e+bim, in 2021 the Ministry of Education approved the first reform of the high school Technical Drawing program, which was implemented – first as a pilot - by two of the

schools that participated in this initiative. However, the future goal is that all technical schools' programs related to drawing or construction will incorporate BIM.

E-learning

To address the gaps in human capital formation and the gap in BIM training focused on methodology across the country, Planbim developed an introductory BIM e-learning course, which was partly financed by the Inter-American Development Bank.

The 12-hour asynchronous course taught about the different BIM concepts, and introduced how to use the BIM Standard for Public Projects. The e-learning program, which was available online from October 2020 to September 2021, had 12 versions and trained 10,253 people of 34 nationalities. The participants came from different sectors of the industry and were distributed as follows: 61% corresponded to the private sector, 25% to the public sector, 10% to students, and 4% to academia.

To measure the impact of the e-learning program, the level of understanding of 57 terms and concepts related to the BIM Methodology was evaluated in the students, at the beginning and at the end of the course. This evaluation showed that, thanks to the program, the knowledge regarding this terminology increased from 25% to 91%.

Initiatives/Organisations

Planbim

To increase the productivity and sustainability of the construction industry through the incorporation of BIM, Planbim was created in 2016 as a 10-year State initiative promoted by Corfo. This project is part of the Productivity and Sustainable Construction Strategic Program, Construye 2025. Planbim objectives are to reduce the costs and terms of the development of public projects and to make the operation of this infrastructure more efficient. To achieve this, two goals were defined:

- The use of the BIM methodology for the development and operation of building and public infrastructure projects, starting in 2020.
- The integration of BIM with other State initiatives, such as online building permits (DOM en Linea) starting in 2025.

ISO Publications - NCh

In 2018, Chile, through the National Institute for Standardisation (INN), created a National Mirror Committee for ISO standards related to BIM. The main objectives of this organisation are to facilitate the local adoption of the standards already published by the International Committee, and to participate in the study and development of current and future international standard projects.

About the identical adoption of international standards in Chile, the National Mirror Committee has proposed the annual republication of up to three ISO standards linked to BIM and, to this day, has achieved the adoption and republication of the NCh-ISO 12006-2 and 3, NCh-ISO 29481-1 and 2, NCh-ISO 19650-1, 2, 3 and 5, and NCh-ISO 16354.

In addition, as an active member of the ISO/TC59 SC13 Committee, the National Mirror Committee has collaborated in the publication of ISO 19650-1, 2, 3 and 5, ISO 16354, ISO 23262, ISO 29481-3, and ISO 12006-3 standards. Currently, the National Committee is participating in the study of the ISO/CD 19650-4, ISO/CD 12911, ISO/PWI 19650-6 and EN 17412-1:2020 standards.

BIM Information Exchange Requirements

Regarding public organisations, Chile continues to make progress in the generation of standardised BIM information exchange requirements (EIR), in line with the BIM Standard for Public Projects. To date, EIRs have been developed for 29 types of buildings and infrastructure such as: hospitals, health centers, bridges, airports, institutional buildings, educational centers, heritage buildings, courts of justice, social housing, public spaces, urban parks, penitentiaries, and sports and public security facilities.

These EIRs, developed jointly by Planbim and the respective institutions (Ministry of Public Works, Ministry of Housing and Urbanism, Judiciary Power, Undersecretary of Regional Development, and the Chilean Air Force), are focused on the requirement of BIM Uses selected to address the specific problems and necessities of each project and institution.

Online DOM (Online Municipal Works Departments)

One of the great challenges for the advancement of the BIM methodology in the coming years and for the digitisation of construction in the State is the automation of

project reviews and building permits. In this line of automation, the Ministry of Housing and Urbanism launched "online DOM", a platform that allows requesting and managing a series of procedures, such as the review of projects and building permits developed by the Municipal Works Departments, through the web. This will allow these procedures to be faster and more transparent.

One of Planbim's goals for 2025 is to integrate BIM into this platform, with the aim of streamlining and making the process of reviewing and obtaining building permits even faster and more transparent. Therefore, since 2021, the teams of Online DOM and Planbim have been working together to achieve this integration.

PARPro

Planbim, together with the Technical Division of the Ministry of Housing and Urban Development (Minvu), conceptualised a platform to review projects from the Minvu DS-19 subsidy program. The Automated Project Review Platform (PARPro) was then developed by two companies, VelociTI and Bwise, and its goal is to reduce the time that non-BIM expert teams from the Ministry spend reviewing projects. This tool seeks to help standardise project information management and, in addition, to increase information quality through the use of the IFC data scheme.

Additionally, PARPro is an initial approach to the integration of BIM in Online DOM, since some urban regulations reviewed in building permits, are already incorporated into the platform.

Latin American Governments BIM Network

The Latin American Governments BIM Network is an organisation created in 2018 and is composed by representatives of the public sector of Latin American countries, currently Argentina, Brazil, Chile, Colombia, Costa Rica, Mexico, Peru, and Uruguay.

The Network aims to increase the productivity of the construction industry through digital transformation, accelerating national BIM implementation programs through collaborative work that promotes common guidelines and favors trade and knowledge exchange in the region.

Currently, the organisation has working groups, which, among other tasks, are developing the Network's website and a Handbook of Strategies, products that are expected to be made available by the end of 2022.

Awareness/Uptake

Numerous and significant advances in the adoption of BIM have been observed in Chile, both in the public and private sectors as well as in academia, and there are more and more projects that require the use of this methodology in the design stage.

According to the BIM Observatory of Public Projects, published in April 2022, the requirement of BIM has increased in the last 5 years, both in terms of the number of projects and in the specificity of the requirements done by public institutions. The study analysed 1,990 public building and infrastructure projects from the Ministries of Public Works; Housing; Health, and the Administrative Corporation of the Judiciary Power, between 2013 and 2020. The results show that the use of the BIM methodology is rising in Chile, since, for example, 76% of public tenders that included BIM requirements in 2020 referenced the BIM Standard for Public Projects.

CHINA

Education/Training

Chinese construction businesses are expanding their technological investments and implementing BIM technology for building life cycle management, which is an efficient technique to accomplish lean project management and intense enterprise operation. BIM technology is widely utilised in construction, municipal engineering, rail transportation, and other industries. Construction firms aggressively nurture BIM technology and management personnel in order to address technical challenges in the field of engineering, which may better achieve the industry's digital transformation and upgrading.

Universities are likewise keeping up with the trends, guiding themselves by societal requirements and aiming for competency development, establishing facilities such as the BIM technology centre, virtual simulation laboratory, industry-academia research and development centre, as well as incorporating BIM technology application courses into talent development programs and actively organising college students to compete in BIM technology application competitions held annually by major software companies. For example, Goldon organises the BIM graduation design competition for Chinese college students each year to promote the development of BIM technology through competition and learning, such as the "Thsware Cup" BIM-CIM innovation competition, The National Structural Information Competition, etc.

At the moment, the primary methods for Chinese construction enterprises to train BIM professionals are:

- Collaboration with universities to commission training, cooperative training with the assistance of external professional institutions and autonomous training inside the firm.
- 2. Enterprises carry out BIM training appropriate for their enterprises, such as the establishment of institutional safeguards, the establishment of specialised information technology departments, the construction of a BIM talent team, paying more attention to the selection of BIM talent, online courses, external lecturers, mentors with apprentices, construction site training, and so on.
- 3. Establishment of BIM research centres by Government, enterprises, universities and other collaborations, setting up laboratories and typical engineering project pilot applications, conducting BIM forums and

competitions, the use of we-media publicity, etc.

The current issues confronting talent cultivation in construction firms include the following:

- Lack of attention to training, funds and training material is detached from the will and needs.
- 2. Due to a lack of practice and lack of various content of training form, it is difficult to respond to practical difficulties in a timely and precise manner.
- 3. Lack of demand analysis for training and the application of copying does not match the needs of the demand.
- 4. Training lacks pragmatism and strategy and does not align with the company's strategic goals.

Exploring methods and solutions for talent development in construction firms include the following:

- 1. Optimising training principles:
 - Strategic principles. Meet the development strategy of the enterprise and the needs of employees
 - ii. Principle of the economy. Ascertain the input-output ratio.
 - iii. Principle of practicality, to improve practicality by increasing the number of practical possibilities, learning through case studies, etc.
 - iv. Principle of Continuity, Establish a long-term training method
- 2. Optimising training strategies:
 - Improve training programs in tandem with development strategies. Consider management, technology, certification and other factors to develop medium and long-term training programs.
 - ii. Incorporate the PDCA (plan, do, check, and act) cycle into training. Use the 'Pareto principle' in the planning stage to focus on the needs of a few key points; in the execution stage, clarify the responsible persons and technical processes; in the inspection stage, use practical operation and interviews to identify and rectify problems; improve the deviation analysis of the results in the process stage, etc.
- 3. Optimising training mode:

- Create a network training platform, independent choice of learning content, and assessment.
- ii. Online video training sessions
- iii. The "dual tutor" concept, in which an apprentice learns from two masters of different trades.
- iv. Combination of internal and external training, as well as supplemental training provided by professional organisations.
- 4. Hold BIM contests to encourage competition-based learning and to support school-to-business interactions and talent transfer.

Initiatives/Organisations

Analysis of the current state of policy

With the advancement of market scale and technology. China has grown to become the world's largest BIM service market. In recent years, the Chinese government has attached great importance to and supported the BIM industry, the Ministry of Housing and Construction, provincial offices and other departments have promulgated a series of preferential policies and measures to accelerate the application of BIM technology and industry to help the development of the industry. Among them, the importance of paying attention to BIM talents has been continually emphasised and the concept of "talent is the first resource" has been upheld to increase the training and development of BIM talents in the construction industry, thereby strengthening the foundation of BIM technology development. Chinese provinces and cities have released a number of policies and measures to promote the application of BIM in 2021.

At the National level

In Guiding Opinions on Accelerating the Cultivation of the Construction Workforce in the New Era issued by the Ministry of Housing and Urban-Rural Development and other departments, it is stated that "explore smart construction-related training, increase the training of construction workers in emerging occupations (trades) such as prefabricated building construction and building information modelling (BIM), and increase the supply of highly skilled personnel".

The Ministry of Transport and the Ministry of Science and Technology issued the *Opinions* on Science and Technology Innovation-Driven Accelerated Construction of a Strong

Transportation Country in August 2021, which requires "promoting the development of prefabrication, industrialisation, standardisation and digitisation of transportation infrastructure, promoting the development and application of smart site technology, and accelerating the independent innovation and application of building information modelling (BIM) technology", and puts forward the requirement of "building a team of high-level scientific and technological talents".

The Ministry of Human Resources and Social Security released a notification in December 2021 regarding 18 national occupational skills standards, including "Building Information Modelling Technician (Occupation Code: 4-04-05-04)."

According to the aforesaid policies, the relevant national departments are vigorously promoting the in-depth deployment of BIM technology while also increasing the development of BIM technical talents in the construction industry and incorporating BIM talents into the skill standard system. Furthermore, industry organisations such as the China Survey and Design Association, the China Institute of Graphics, and the China Municipal Engineering Association have organised BIM competitions and BIM skills competitions in 2021 to promote the application of BIM technology and the development of talent capabilities.

At the District level

With the development of BIM technology and the cultivation of the market environment, BIM technology development has become a hot spot in the construction field in various provinces and cities. Beijing has introduced BIM-related policies in recent years, all pointing to integrate development of BIM with new technologies such as smart transportation and 5G to enhance the degree of intelligence and also launched a call for BIM application demonstration projects in 2021 to lead other projects in BIM application through demonstration projects.

Shanghai is one of the early cities in China to promote the application of BIM technology. In order to accelerate the application of BIM technology in various fields, the *Shanghai Three-Year Action Plan to Further Promote the Application of Building Information Modelling Technology (2021-2023)* was released in 2021, requiring a major breakthrough in the application of BIM technology and putting forward the important task of "Building a talent hub" by the end of 2023. The proportion of construction technicians skilled in BIM-based

modelling and related basic applications should reach 80% by the end of 2023. Through various ways such as project training combined with BIM, a group of composite professionals proficient in the whole process of engineering construction management and BIM technology will be cultivated. At the same time, to ensure the development of BIM technology talents, Shanghai will be including BIM technology in the evaluation of titles.

Guangdong Province released the Guangdong construction industry 14th five-year development plan in 2021. It proposed to accelerate the integrated application of BIM and 5G, among other technologies and emphasised the need to accelerate the cultivation of the construction industry workforce, as well as to increase the training efficiency of skilled construction workers through training and skills competitions in new intelligent construction methods using BIM technology. Further, it organised the preparation of the "Guangdong Province BIM Talent Training Guidelines" in June 2021, to help professionalise and standardise the training of BIM talents.

In addition, other provinces and cities such as Chongqing, Zhejiang, Jiangsu and Sichuan have also issued relevant policies to further promote the application of BIM technology in 2021.

To sum up, the Chinese government released a series of policies and measures to accelerate the application of BIM technology in 2021. Among them, they have also started to pay attention to the importance of BIM talents, upholding the concept of "talent is the first resource", increasing the training and development of BIM talents in the construction industry, and consolidating the foundation of BIM technology development.

Standard status analysis

In the context of China's vigorous development of BIM technology application, in order to standardise the application of BIM technology in various engineering fields, domestic industry organisations, construction enterprises and others have researched and compiled relevant BIM standards. In 2021, relevant BIM standards were released by national government departments, industry associations and district, etc. Some of the standards are as follows:

1. National Standards

 Building Information Model Storage Standard GB/T 51447-2021, published on 8 September 2021.

2. Industry Standards

- Standard on Application of Information Model for Highway Engineering Design JTG/T 2421-2021, published on 26 February 2021.
- Standard on Application of Information Model for Highway Engineering Construction JTG/T 2422-2021, published on 26 February 2021.
- Unified Standard for Railway Engineering Information Model TB/T 10183-2021, published on 10 March 2021.

3. District Standards

- Shanghai: Requirements for Modelling and Delivery of Construction Drawings and As-built Building Information Models for Housing Buildings (Trial Implementation), released on 25 November 2021.
- Shanxi Province: Building Information Model Full Life Cycle Application Standard DBJ 04/T420-2021, released on 14 December 2021.
- Liaoning Province: Liaoning Province Standard for Delivery Data of Building Information Model for Completion and Acceptance DB21/T3409-2021, released on 30 April 2021.
- Shenzhen Municipality: Standard for the Expression and Delivery of Information Models for Urban Rail Transit Projects SJG 101-2021, released on 1 September 2021.

After research and analysis, China has formulated corresponding BIM standards mainly for the field of construction engineering in the early days. With the application of BIM technology in various engineering fields, BIM standards have also been formulated in the fields of roads, bridges, railways and rail transportation, which is conducive to regulating the application of BIM in various engineering projects in China and improving the application level of BIM personnel. At the same time, the standard system has been extended from stage application to the whole life cycle, presenting the development trend of data transfer and application openness in all stages, which helps to pull together the various participants in the upstream and downstream industrial chain.

Awareness/Uptake

The market size of the BIM industry in China has increased from 4.05 billion yuan in 2016 to 11.91 billion yuan in 2020. BIM can significantly improve work efficiency and

quality, its penetration rate is expected to continue to improve, and the market size will continue to grow. The BIM market is expected to reach 67.08 billion yuan in 2025, with a compound annual growth rate of 41.3% from 2020 to 2025.

Construction firms are increasingly investing in BIM applications. 14.30% of companies invested more than \$1 million in BIM applications in 2017, and only 3.30% invested more than \$5 million, however, by 2021, 44.84% of companies have invested more than \$1 million, nearly half of them, and nearly 20% have invested more than \$5 million.

The application of BIM technology in China has now vielded immeasurable value. BIM technology was employed in the construction of the 'Thunder God Mountain Hospital' and the 'Fire God Mountain Hospital', which are known as the "speed of China", as well as in large and complex buildings such as the Shanghai Centre Tower, the tallest building in China, the non-linear Beijing Phoenix Media Centre and the Daxing Airport. Especially in recent years, BIM technology has been gradually promoted and popularised in large and medium-sized enterprises, and along with the concept of national development strategies such as "Digital China" and "Made in China", the construction industry is paying increasing attention to digital construction, intelligent construction and green construction, especially to BIM as a data carrier is being promoted more vigorously.

With the broad use and extensive promotion of BIM technology in China, the use of BIM in various engineering projects has yielded certain benefits while also significantly promoting the development of BIM talents in China. However, there are still certain difficulties and flaws. The SWOT method is used to analyse the situation in relation to the development of policies and standards in China.

S - Strengths and advantages

Following research and analysis, China has released policies to promote BIM application and standards for BIM technology from different levels, which has promoted the effective development of BIM application in China and established a good environment for the cultivation and development of BIM technology talents in China. At the same time, China's engineering projects are in a state of large-scale construction, with the support of BIM policies, the application demand for adopting BIM technology in all phases is extremely strong, and a number of composite

talents for BIM technology application have emerged to accelerate the development of BIM technology in China.

W - Weaknesses

Although the relevant government agencies have published guidelines for the promotion of BIM technology application and the training of BIM talents at this level, the exact implementation details and implementation strategies need to be defined and described. At the same time, relevant BIM standard specifications or technical guidelines have been published around the world, but BIM software or systems are still relatively lacking. and thus cannot meet the needs of large-scale BIM applications in the country, making it difficult to ensure that various engineering projects are carried out in accordance with BIM standards. For the intelligent construction industry, in the era of big data which is changing faster, it affects the improvement of production efficiency and quality and needs to be further accelerated to solve this.

O - Opportunities

As mentioned earlier, against the background of rapid development of information technology and the government's vigorous promotion of industrial information development, there is a great demand for the application of BIM technology in engineering projects. Taking advantage of BIM technology development opportunities is beneficial to integrating BIM technology with business, assisting applications such as 3D design, smart site, automated production, and smart building, improving the quality of engineering projects, and promoting industry information transformation. By learning all kinds of BIM knowledge and skills, engineering personnel can help improve BIM ability, become BIM technical talents, thus better serve the project digitally.

T - Threats and challenges

Behind the opportunities there is also a challenge, especially BIM technology as a new technology in the construction industry, still has several key technologies to be addressed. Simultaneously, the implementation of BIM technology must be integrated with emerging technologies like AI, 5G, IoT, cloud computing, and big data, to confront the uncertainty. To ensure a high degree of integration between BIM technology and other business, a variety of professional technologies must be applied and technology is rapidly iterating and

updating, while business needs are becoming increasingly diverse, posing a significant challenge for BIM technical talents. This not only requires a clear delineation of the interface and division of labour between the application of BIM technology in engineering projects at a societal level but also requires BIM technology practitioners to keep abreast of the times, master key technologies and follow cutting-edge developments.

CZECH REPUBLIC

Education/Training

In the Czech Republic, there is generally a lot of BIM education and training through BIM seminars, workshops and presentations led by CAS (Czech standardisation agency), CzBIM (Czech BIM Council), universities, companies, software vendors, technical chambers, etc. in several recent years. But, in 2020 these activities were reduced or postponed due to COVID-19 restrictions during the spring and also autumn seasons throughout society. including high schools and universities. Some of them were switched to online conferences, seminars or workshops, but unfortunately not all of them. Although this trend of COVID-19 restrictions partly continued in 2021, people already got used to online training, conferences, etc. and digitalisation and BIM have made progress.

In November 2019, CAS published the BIM EDU report, which described the state of teaching at the Czech public universities. The focus was on the 5 main Czech universities, where AEC is taught. The leading Czech Technical Universities have been implementing BIM into their curriculum over the last few years. This was done mainly as standalone subjects or as innovations of the regular ones. The content of the subjects would vary depending on the branch of study at both undergraduate and graduate levels. There is an effort to find interactions between subjects and connect them together, in addition to existing individual subjects focused on 3D CAD SW, or other special subjects. This implementation of interconnections between subjects or fields (to collaborate) is also one of the biggest obstacles of BIM implementation into teaching. However, nowadays a shift can be seen in this area when new programs of study focused on BIM are emerging - for example the Technical university of Ostrava, faculty of civil engineering launched a two-year master's program, which emphasises the coordination of construction processes in the BIM information environment within the digitisation of construction, in the fall of 2021. Other obstacles stated in the report were for example: lack of standardisation of BIM in the Czech Republic (it's still going on), insufficient qualification of teachers, lack of study materials and models in sufficient quality, lack of money. Universities also connect more with professionals in both research and educational areas.

BIM is also being implemented in secondary education (especially at technical high schools) mainly in 3D CAD based subjects. In 2019, there was also a significant shift around updating the Framework Educational Programs (RVP). Within these, proposals for the update of the RVP were prepared so that secondary schools with a construction focus have the opportunity to adapt the BIM to their school educational programs with effect from the school year 2021/2022.

Initiatives/Organisations

CzBIM – Czech BIM Council (www.czbim.org) CzBIM is a non-profit organisation which is focused on the support of BIM implementation in the Czech Republic. It assembles professionals from both companies and individuals active in the BIM area (around 80 members at the end of 2021). The main goals are popularisation, education, standardisation and implementation of BIM. CzBIM hosts an annual conference titled 'BIM DAY'. There were several documents published and many others have been prepared under its wings. It also plays a key role in the negotiation with ministries and standard bodies. It resulted in success in 2017 when the Czech government approved a BIM implementation document which covers a strategic plan for the next 4 years. The main goal was to prepare the Czech construction environment for BIM aiming to the beginning of 2022 when big public projects should use BIM (this document is called BIM Policy 2022).

The Czech BIM Council decided to establish a branch of buildingSMART in the Czech Republic at the end of 2020. This was realised in 2021. The main reasons were an openness to international cooperation and standardisation, to gain and share information, certification, etc.

<u>CAS – Czech standardisation agency, BIM</u> <u>Policy 2022 (www.bimkoncepce.cz)</u> CAS – Czech standardisation agency is a funded organization of the Czech Office for Standards, Metrology and Testing (ÚNMZ).

At the end of 2017, CAS established a new department to execute the tasks of the BIM Policy 2022 (www.bimkoncepce.cz). The BIM Policy is a strategic plan determining the direction of the Czech Republic in the field of BIM and related topics within 10 years (until 2027).

In 2018, there were 6 workgroups established:
- Pilot projects.

- Procurement, project management and contracts.
- Data and information standards.
- Documents for estimations.
- Education, public relations.
- Terminology and standards.

In 2019, the next workgroups were established: Facility management, PS LEG - for legislation and imposing a BIM obligation and also an interdepartmental workgroup led by the Ministry of Industry and Trade (www.mpo.cz) for coordination between all significant stakeholders during the BIM Policy implementation (ministries, authorities, state organisations, universities, professionals chambers, and organisations), which has around 30 members.

In April 2019, the Ministry of Industry and Trade recommended the use of IFC format for information transfer during the whole building lifecycle.

In autumn 2019, CAS prepared a set of workshops on different BIM topics, concluded by the BIM summit conference. The obligations to use BIM standards from 2022 were introduced during this BIM summit. The investors of public projects financed from public resources, above a specified value (note: the limit set for 2020 - 2021 was 5 350 000 €) will have to use some of the BIM standards. These include CDE - common data environment, Information model using the Construction Data Standard, BIM protocol.

In 2020, many changes in legislation and supporting tools aiming towards electronic communication and digitalisation in the building industry were realised or started. The Czech building law was changed in the area of building permit processes, which are allowed to be submitted fully electronically from July 2023. From that date, it should be easier and faster for builders to gain building permits, because of a new "builder's portal". The builders can communicate and gain all permissions from all authorities through the portal. The government also approved the establishment of data repositories usable for BIM, as well as interconnection of BIM and digital technical maps. Another new regulation is, for example, the obligation to use an electronic construction diary for above-limit public projects from 2021.

CAS introduced and - after a comment procedure - published a number of documents and methodologies, such as: BIM protocol,

which is to be used as an annex to the contract, properties of CDE, etc.

The BIM Policy 2022 including schedule was updated in 2020 (for years 2021 – 2027), and the government adopted the document at the beginning of 2021. Some dates, including obligations of using BIM were postponed due

to new knowledge and also for coherence with the law of electronical building permit. The new obligations of BIM usage will apply from July 2023 with gradual effect.

In the fall of 2021, CAS published the first version of the Construction Data Standard for buildings, to the level of building permit. Viewing the standard, exporting to xls and ifc formats are available on the website: https://dss.koncepcebim.cz/. Standards for next levels and updates will continue to be implemented in the following years.

<u>SFDI - The State Fund for Transport</u> <u>Infrastructure (www.sfdi.cz)</u>

The State Fund for Transport Infrastructure is an important organisation, which supports BIM. SFDI in cooperation with the Ministry of Industry and Trade, the Ministry of transport, Czech standardisation agency and other organisations published Regulation for information modelling of buildings (BIM) for transport infrastructure construction in October 2020. This document is similar to documents like the Code of Practice (CoP) and Employer's Information Requirement (EIR). It defines minimum required information to be contained in BIM models in different design phases - Data Standards for roads and railways (approved in 2021), specifies formats (IFC), units, etc. It was introduced on the basis of experience from pilot projects and it is used for other pilot projects.

ÚRS CZ a.s (www.urs.cz)

This report was written by the author employed by a company ÚRS CZ a.s, a private organisation dealing with standardisation and providing SW tools in the area of cost estimations, cost calculations and management. ÚRS CZ is a producer of the price database ÚRS and several software. The company cooperates with partners developing or providing software for designs, and provides complex BIM tools for cost estimations of buildings, organises training and seminars. ÚRS CZ also cooperates with the Czech standardisation agency, cooperates with ministries and is a member of Czech BIM Council.

Awareness/Uptake

Both public and private investors started pilot projects to try BIM. There is an increasing cooperation between significant Czech organisations on pilot projects for both infrastructure and buildings. Some of the big contractors are running their own pilot projects. There is a visible shift from "I would like to do BIM" to "do and try BIM", do projects in 3D CAD SW and add useful information, collaboration, try open format such as IFC. However, this is a slow process and many people are still a bit afraid of BIM, or they are just waiting. The main reasons are the difficulty and costs caused by switching to other SW and processes, the need to go through related education/training, lack of BIM projects, and lack of Czech BIM standards (the first one was issued only at the end of 2021). In general, there are BIM projects currently running in the Czech Republic and the number is increasing, however 2D is still used for the majority of projects.

The increasing attention of manufacturers of materials and products can be seen. They want to be prepared and they are thinking of how to implement information about their products into 3D CAD and other SW. There is also an increased interest in the area of facility management and the usage of BIM, which caused development of new SW tools and methodologies.

A rising consciousness of BIM in the Czech Republic is also supported by the need of society to search for modern technologies and their use. In addition to BIM, there is an awareness of the need for electronic communication and digitisation.

FINLAND

Education/Training

Universities and Universities of Applied Sciences (UAS) provide BIM education for their students. All current civil engineering students study BIM to some extent included in their professional courses. The main focus is open BIM based design in different disciplines, but more and more BIM principles are also taken into account in project management courses. In many universities, basic BIM studies are started in the first year of the education program. Some UAS also provide whole bachelor's degree for Architectural education where the key areas are modelling (BIM) and model utilisation: visualisation, renovation, maintenance of buildings, lifecycle thinking and energy efficiency. BIM is also one part of infrastructure design courses for example in road design and geotechnics. In many universities cooperative BIM based project works have been used as a good way to learn open BIM workflow.

In many regions of Finland, some UAS have introduced BIM for companies, public sector clients and officials in research, development, education and training projects. These projects have been funded by the EU, government and private sector. In these projects, new BIM education, training methods, learning materials and learning platforms have been developed for various groups such as designers, clients, contractors, house owners, public building permit and fire safety, and other officials. Ongoing projects are for example international BIM-ICE project hosted by LAB UAS, National Raksadigi-project hosted by Savonia UAS and international BENEDICT project in which the University of Tampere is one partner.

Some Vocational Education Institutes also provide BIM education as one part of studies and continuing education related to BIM.

For graduate, postgraduate and further education students, there are several options and possibilities offered:

- Special Courses and Further Education is provided by some UAS:
 - BIM for Vocational Education Teachers, 15 ECTS.
 - . BIM Basics Online, 5 ECTS.
 - . BIM Coordinator, 15 ECTS.
 - BIM Coordinator for building permit authorities, 15 ECTS.
 - . BIM Coordinator for infra, 15 ECTS.

- . BIM Coordinator for infra production, 8 ECTS.
- . BIM Manager, 5 ECTS.
- All vendors (Solibri, Autodesk, ArchiCAD, Trimble, Novatron, Symetri, Civil Point, Cadmatic, etc.) are providing BIM training for their own software solutions.
- Large companies such as Skanska, YIT, NCC, SRV (construction) and Senaatti (state client office) arrange focused inhouse training as required in cooperation with universities and UAS's.

Initiatives/Organisations

There are several initiatives taking place in Finland, including the following:

- buildingSMART Finland has about 120 company members and user groups for Education, Building, City planning and Infra are all up and running.
- KIRAHub continues as a new association in the footsteps of former KIRA-digi, a Government's key project, which involves ministries, municipalities and the KIRA forum. The aim is to create an open and interoperable information management ecosystem and harmonised practices for the built environment.
- COBIM, the national common BIM requirements, was published in March 2012 and it is now in widespread use. English, German, Estonian and Spanish translations of the requirements have also been completed and four Annex for building owners were published in 2016. The need for updating the COBIM guidelines is recognised and the update process has started. In the future, COBIM will be also be more connected to European BIM standards. Guidelines of geotechnical BIM have also been published. BuildingSMART Finland is responsible for developing and updating national common BIM requirements
- National common BIM requirements have also been published to Infrastructure projects (Common InfraBIM Requirements), the last version was published in 2019 published by buildingSMART Finland.
- The development of the Finnish LandXML based data format for neutral BIM data exchange for infrastructure (Inframodel) will be continued.
- The first Finnish textbook for BIM education: 'BIM on a construction site'

was published in 2016 by Building Information Ltd.

Awareness/Uptake

BIM is now in everyday use in Finland. Large firms such as Skanska, NCC, YIT, SRV and others use BIM for 100% of their own production. Public sector clients are using BIM more and more in their building projects. Many public clients have developed their own detailed BIM requirements for project participants.

In Finland BIM always means using open standards: IFC for buildings and LandXML for infrastructure. The first developing steps of implementing IFC to infrastructure projects have also been started.

The first draft for the skills and learning outcomes matrices related to BIM and energy-efficiency have been published in international BIMEET-project in which Metropolia UAS and Technical Research Center of Finland (VTT) have worked. The development of defining BIM skills and learning outcomes will be one large task for buildingSMART Finland Education Group. This will be one part of a new working program.

Different levels of BIM courses/training will be planned and executed based on the learning outcomes. Collaboration with other EU projects and buildingSMART International, focusing on education and professional certification systems, is an ongoing effort to develop EU wide course content and delivery methods. The Technical Research Center of Finland (VTT) and Metropolia UAS are recent committee members for "CEN/TC 442/WG 8 - competence" that aims to define requirements of competence, knowledge and skills related to the Information Management enabled by the Information Modelling.

Also other new practical uses of BIM have been found in many recent open BIM R&D projects in Finland. For example, how models can be used to ensure the safety of buildings. As a result of new use cases, very different new needs to BIM competences are recognised and new types of BIM education and training methods should be introduced.

The Finnish State BIM Strategy can be recognised based on the ongoing legislative and development projects of the Ministry of the Environment in Finland. BIM objectives of this reform are as follows:

- Building Permits are applied for using BIM or other machine-readable formats.
- Design and as-built BIM models are stored to the national register in an open standard format.
- The building owner is responsible for updating the register about repairs that do not require a permit.
- Machine-readable operating and maintenance manuals are required for new buildings.

This reform will cause plenty of new needs for BIM education. An extensive BIM training for building permit authorities is needed and it is currently ongoing. Metropolia UAS currently organises BIM basics and BIM coordinator courses for building permit professionals where participants have the opportunity to receive 80 percentage support from the Ministry of the Environment, Finland. This reform also needs to be taken into account when national common BIM requirements are updated.

BIM will also be implemented more in city modelling. One big goal is to integrate house models, infra models and city models like digital built environments.

In 2019 the ministry of environment published a national strategy and roadmap for information management standardisation in the built environment (RASTI project). The roadmap described a national vision for 2030 and highlighted the local implementation of international standards coherently. Today we know that the goal of green transformation and digitalisation requires significantly more standards and a new collaboration in data exchange. Based on the RASTI project vision 2030, buildingSMART Finland and Building Information Model Ltd. have launched Information standardisation for the built environment -working program. The goal for this four-year working program is to standardise and unify information in the built environment in Finland. Information standardisation for the built environment creates more sustainable, dynamic, and systematic mode of operation. The main principle of the program is to generate a strong foundation for the sustainable growth and development at the organisational and societal level. The working program also has multiple beneficial effects on BIM education. Joint information standardisation enables smooth and wide information and knowledge sharing. Additionally, within the field of BIM-

standardisation there is a need to enhance research and learning. Therefore, the program supports more enhanced BIM-education on the university and industry levels and adoption of international BIM standards. One main focus of the working program is to publish new national common BIM requirements for the built environment.

The national KIRA growth programme has been started. It covers the growth opportunities and measures for the sustainable development of the Finnish real estate and construction sector. The aim of the growth programme is to create a shared mindset and direction towards growth as well as to commit the real estate and construction sector to the measures of regenerative growth and direct long-term financing to target-oriented development. One goal is to digitise buildings and processes as well as ensure a reliable and secure data stream throughout the life cycle of the built environment while taking new business opportunities into account.

FRANCE

Education/Training

The National Education authority in France anticipated the reform of technical graduates in 2011, making BIM compulsory in the Architecture and Construction domain. More and more technical and professional high schools advocate the use of BIM in the realisation of projects. Thus, during internships, students bring their own digital skills to companies, while they learn more about business know-how.

In 2020, buildingSMART France created an "OpenBIM LABEL" for the initial education and lifelong learning program. The aim of this label is to promote a real "OpenBIM" approach inside the learning system.

This label is based on 6 items: the project component, interoperability, tools, process, innovating transition and OpenBIM ecosystems.

Nowadays, buildingSMART France has joined the BSI individual certification program. More information is available on www.buildingsmartfrance-mediaconstruct.fr.

Initiatives/Organisations

buildingSMART France (association created in 1989, becoming the French Chapter of buildingSMART International [bSI] in 1996) and MINnD (a national research project started in 2014), offer guides for good practice and concrete experiments to make BIM operational.

Their work also contributes to standards development, carried out internationally, for which France remains an active contributor to the definition of standards, useful and applicable to the construction industry.

In terms of contributions, bSFrance initiated, in 2020, the *aVenir BIM* trophies, to reward the research of French stakeholders, regardless of the level of their diplomas. bSFrance is also working on labelisation training.

Since 2015, the French government has launched a national program, the *PTNB*, and then the *BIM Program*, to promote the use of BIM throughout the territory, targeting SME's of the building industry. This is how a standardisation strategy was developed and recognised by the *EU-BIM-task-group* as a lever for the adoption of BIM in public procurement.

Another action of the PTNB has been to set up a Reference of BIM skills, for project management companies, and construction SME's. Of course, a professional must, above all, remain a technician, with a knowledge of collaborative processes, and of the appropriation of BIM as a tool (and not as a finality).

EduBIM, stems from the Research project MINnD, stands for the main French event dedicated to Education and Research around BIM and digital the mock-up. It also stands for a network of trainers, researchers, and professionals from the construction industry. A growing network that encompasses all education level (universities, engineers, architecture schools, etc.) and subsectors (construction, public works, social sciences, etc.). For its 7th edition, EduBIM was held at EIVP (Ecole des Ingénieurs de la Ville de Paris) in December 2021, with the theme "New perspectives of BIM - The digital twin and smart building". More information is available at https://easychair.org/cfp/edubim2021

Awareness/Uptake

In France, the construction industry remains very heterogeneous in terms of integration of digital technology and BIM, due to the fragmentation of the player types, which are mainly SME's.

Numerous significant advances have been observed in different domains, led by actors looking for new values for building, infrastructure and public works. The generalisation of BIM, for all actors, on all types of projects, both public and private, has been continuous since 2014. Thus, in 2019, BIM reached a rate of 66% of overall adoption in France. More specifically, for example, 42% of architectural agencies are implementing BIM practices in 2020.

GERMANY

Education/Training

The number of colleges and universities in Germany offering BIM programs has increased in recent years. This applies to both bachelor's and master's programs in engineering and architecture faculties. In addition, many BIM courses are offered by construction industry associations and chambers. Likewise, there are numerous private initiatives on the market that offer online and classroom training on digitalisation topics in general and BIM in particular.

The Jade University of Applied Sciences in Oldenburg observed the state of BIM education in the years of 2014-2016, a period in which the implementation of BIM started in all of the surveyed federal states, both in university curricula and in further education. Here, differences with other European countries emerged.

In England for example, a large number of BIM master's degree programs consider the BIM methodology in the entire life cycle of the building object. Compared to this, in Germany only individual modules on BIM were integrated into the curricula of the universities.

In general, the majority of BIM education and training concepts in Germany focused on the use of specific BIM software. The application of the actual methodology, the changed communication structures within the framework of an OpenBIM concept, was far behind in international comparison.

Initiatives/Organisations

BuildingSMART Germany aims to support and promote the development of BIM education initiatives in Germany. This is to ensure that a consistent BIM education landscape emerges in this country.

bSI Professional Certification Program:

With its Professional Certification Program (bSI PCert), buildingSMART International offers a globally valid quality benchmark for evaluating and comparing knowledge and competencies in Building Information Modeling. In Germany, buildingSMART Germany cooperates with the Association of German Engineers (VDI).

Together they have developed the guideline VDI/bS-MT 2552 8.1, as the basis for this program. Sheet 8.2, also a joint product of buildingSMART and VDI, has also been published. Within the framework of this certification program, buildingSMART itself does not offer any training or courses, but rather defines minimum requirements of

course content and learning outcomes, regulates the approval of training providers as well as the testing and certification of individuals. For the actual professional training the training provider is responsible.

The bSI PCert has a two-tier structure. The first level of the buildingSMART certification program - the Professional Certification - Foundation - aims to provide a common understanding of BIM fundamentals. It is designed to provide basic knowledge in Building Information Modelling and to test and certify the acquired knowledge by means of a central, internationally coordinated examination.

This basic program has been offered to training providers in Germany since May 2018 as the buildingSMART/VDI Certificate BIM Qualifications - Basic Knowledge. Approximately 40 training providers, including universities, private trainers, chambers and companies, have since offered this certification to their training participants in Germany. More than 2500 participants have been certified so far.

The second phase, the advanced level called Professional Certification - Practitioner, is expected to be offered in 2022. It focuses on teaching application-related BIM skills. In addition to building SMART Germany, there are other institutions in Germany that pursue the goal of advancing digitalisation in the

are other institutions in Germany that pursue the goal of advancing digitalisation in the construction industry and supporting companies in the construction industry in this process.

Mittelstand 4.0 Centre of excellence Planning and Building:

Since 2018, the Mittelstand 4.0-Kompetenzzentrum Planen und Bauen has been working in Germany with the aim of supporting the digitalisation and networking of medium-sized companies in the value chain of project development of planning, construction and operation. This centre of excellence is funded by the German Federal Ministry for Economic Affairs and Energy as part of the funding priority "Mittelstand-Digital - Strategies for the digital transformation of business processes".

The overriding concern of the centre of excellence is to promote the increased use of the BIM method as well as to achieve a successful implementation of digital planning methods in the construction industry. This means that the BIM debate among builders, project managers, architects, engineers and software developers is to be extended to the

phases of project development and operation. In this way, related sectors of the banking, insurance and real estate industries, facility management and the skilled trades are to be made aware of the new possibilities.

Planen-bauen 4.0 GmbH:

Planen-bauen 4.0 GmbH has been coordinating and accelerating the digitalisation of the German construction industry since it was founded in 2015. It supports the federal government's BIM pilot projects in the areas of building construction, road, rail and waterways. In addition, the company is involved in numerous national and international projects for the standardisation and implementation of the model-based way of working.

BIM Deutschland:

The German federal government wants to accelerate and actively shape the digitalisation of business processes in the construction industry. For this reason, the Federal Ministry of Transport and Digital Infrastructure, together with the Federal Ministry of the Interior, for Construction and Home Affairs, founded BIM Germany in the summer of 2019 as the center for the digitalisation of construction. The most important goal of BIM Germany is to create coordinated and uniform specifications in infrastructure and high-rise construction. All information and tools developed are to be made available openly and free of charge.

Awareness/Uptake

Building Information Modelling as a planning method does exist in Germany. Nevertheless, studies show that many companies do not use this method or use it insufficiently. This entails the risk that they jeopardise their competitiveness because they lose touch with new business areas. The demand from private clients for the use of BIM is still low. Increasingly, however, more and more tenders are calling for digital design and construction.

In Germany, the federal government is now taking on a pioneering role. In the future, BIM will be increasingly used in the awarding of public contracts for federal infrastructure construction and infrastructure-related high rise construction. The biggest challenge here is the lack of rules and standards. That is why, at a hearing in the German Bundestag in January 2020, representatives of business, science and associations called for reliable framework conditions to be created for planning and construction companies in the digitalisation process.

HONG KONG

Education/Training

The Construction Industry Council (CIC) continues to promote and facilitate wider adoption of BIM and Construction Digitalisation and related technologies in architecture, engineering, construction and operation, as well as formulate strategies for market transformation and promote cross-discipline collaboration in the industry. The CIC maintains its momentum in developing standards, training, certification and accreditation, R&D in pursuit of these objectives, with significant achievements in 2021.

The School of Professional Development in Construction (SPDC) is the professional education arm of the Hong Kong Institute of Construction (HKIC) and was established to provide professional and continuing education pathways for industry practitioners in construction. SPDC is developing various professional education & development programmes in construction, in particular in the areas of Construction Digitisation, Industrialisation, Innovations and New Technologies. Particularly, SPDC has offered a wide range of programmes covering BIM Manager, BIM Coordinator, BIM Modelling and BIM Viewer. These programmes enable the construction practitioners to pursue relevant and recognised qualification not only to meet the industry's needs, but also to provide them with the continuous learning opportunities and pathways for their career and professional advancement in construction.

The CIC BIM Certification and Accreditation Schemes aims to ascertain the competency of BIM personnel and the quality of local BIM training courses. The Certification Scheme for BIM Personnel aims to set standards and ensure relevant construction professionals and other personnel will have the appropriate skill levels and competency in using BIM to meet the industry's needs, align the skill levels and competency of BIM personnel with the industry's needs, CIC BIM Standards and Development Bureau's requirements for BIM personnel and uphold the quality of BIM personnel in meeting the industry's needs. The Accreditation Scheme for BIM Training Courses aims to ensure the scope and quality of the BIM training courses offered meet the industry's needs, uphold the accreditation quality of BIM training courses and to facilitate practitioners to obtain certification of their competence by the CIC. Since the launch of

the Schemes, nearly 480 BIM managers and 340 BIM coordinators have been successfully certified by the CIC. Moreover, 6 BIM manager courses and 10 BIM coordinator courses have been accredited by the CIC.

To cope with the surging demand for BIM Viewers, the CIC developed a "Teaching and Learning Kit" for BIM Viewer training. Launched in October 2021, the Kit is intended for both self-learning and instructor-led training. After completing the post-course online BIM Viewer Quiz, those passing the quiz are awarded a CIC BIM Viewer Certificate. Since its launch until December 2021, nearly 1,700 individuals have completed the online training and received the certificates.

The CIC organised the CIC BIM Competition for the third consecutive year in 2021, aiming to promote the practical uses of BIM through collaborative and competitive learning approach among participating teams of higher education students in construction-related disciplines. Themed "An Advancing Net Zero (ANZ) Hub in CIC-Zero Carbon Park" this year, a highest record was reached with 53 teams of 252 higher education students registered. We organised 20 different webinars to build up their knowledge and skills in BIM, including BIM authoring tools, Geographic Information System (GIS) platforms, Common Data Environment (CDE) related solutions and building energy simulation software, and net zero building design, enabling their outstanding performance at the finals.

Initiatives/Organisations

The CIC BIM Space has been serving as a one-stop service platform for providing BIMrelated services and support to the industry. We have revamped the showcases and continue to encourage BIM adoption and proliferation through organising joint seminars and events in collaboration with different stakeholders to provide stakeholders an information sharing platform. Hands-on software workshops, advisory workshops, awareness seminars and workshops; and showcase advanced BIM and related technologies with their applications in real projects are also organised. 47 webinars were organised throughout the year, covering various BIM-related events such as BIM Talks, BIM Solution Day, BIM Show & Tell, briefing of the Certification of BIM Personnel and Accreditation of BIM Training Courses, and consultation and training sessions for industry

stakeholders on CIC BIM Standards, CIC BIM Space successfully attracted around 32,200 attendees.

The CIC further developed and enhanced the CIC BIM Standards in 2021 to meet the needs of the industry. A total of 11 new/updated CIC BIM Standards-related publications in English were issued by the CIC as follows:

- CIC BIM Standards General (Version 2.1 2021).
- CIC BIM Standards for Architecture and Structural Engineering (Version 2.1 -2021).
- CIC BIM Standards for Underground Utilities (Version 2 2021).
- CIC BIM Standards for Mechanical, Electrical and Plumbing (Version 2 -2021).
- CIC Production of BIM Objects Guide General Requirements (Version 2 -2021).
- CIC BIM Dictionary (2021).
- CIC BIM Exchange Information Requirements (EIR) Template (Version 1.1 - 2021).
- CIC BIM for Asset Management & Facility Management Case Sharing (2021).
- CIC BIM Guide for using BIM in generation of MEP digital drawings for Statutory Submissions (2021).
- CIC BIM Special Conditions of Contract (2021).
- CIC BIM Services Agreement (2021).

Training classes and webinars were conducted after launching of the new publications to facilitate better understanding and adoption of them by the industry. Online training videos of the CIC BIM Standards – General were made available to industry.

To further promote digitalisation in the construction industry, the CIC has been working with experts and key industry stakeholders to craft the Construction Digitalisation Roadmap. The Roadmap has been officially launched together with the Construction Digitalisation Dashboard. The vision of the Roadmap is "SMART Construction Empowered by Digitalisation: all processes involved in the built asset lifecycle are streamlined and digitalised to continuously improve productivity and safety during planning, design, construction and operation, and sustainability for better quality of life". It identified six high-value digital application areas, namely Smart Data Sharing, Smart

Planning and Design, Smart Submission with BIM, Smart Offsite Fabrication and Delivery, Smart Site Management, and Smart Asset and Facility Management, and nine core strategies to support construction digitalisation.

Established in 2013, the CIC Research and Technology Development Fund continues to provide financial support for research projects which improves the performance and competitiveness of the industry. Completed in 2021, one of the CIC funded research and development projects, the "BIM-Automation of Gross Floor Area (GFA) Calculation, Fire Safety and Prescribed Checking for General Building Plans (GBP) Preparation" could automate most of the time-consuming calculation and checking issues commonly required for GBP submission. Starting from 2021, CITF-eligible architectural firms are entitled to use this R&D product under a free license till the end of December 2022.

The Construction Innovation and Technology Fund (CITF) was established to encourage wider adoption of innovative constructive methods and new technologies in the construction industry with a view to promoting productivity, uplifting built quality, improving site safety and enhancing environmental performance. By the end of 2021, CITF supported over 8,100 BIM training places. In 2021, CITF launched a series of enhancement measures, including extending the funding scope and uplifting the funding ceiling for promoting the adoption of existing technologies and manpower training, such as new funding categories namely BIM Viewer Collaborative Training and BIM Project-based Coaching and launching a pilot scheme to provide support for the manpower and other resources required in introducing new technologies for pioneering application in the industry.

In 2022, the CIC will organise the first-ever BIM Education Symposium in Hong Kong to promote BIM education in higher education institutions through sharing of latest trends in building technology, best industrial practices and new challenges of BIM-related training needs in Hong Kong and around the world.

JAPAN

Initiatives/Organisations

The Ministry of Land, Infrastructure, Transport and Tourism (MLIT) established *BIM* guidelines for government buildings in 2014.

The focus is on the use of BIM, from the schematic programming phase to post-project maintenance.

As mentioned above, BIM utilisation was started in the national government building procurement field, but CIM (Civil Information Modelling and Maintenance) which is BIM of the civil engineering field begun on a full scale.

CIM aims at new construction linked with robot introduction ICT, IoT, AI, and are redefined as *i-Construction* with the goal of increasing the productivity of the construction sector by 20% no later than 2025.

i-Construction in public procurement up to now was defined by the Cabinet Office as one of the government growth strategies in 2016. In 2018, the Cabinet Office announced that it will aim to realise *Society 5.0* aiming for a data-driven society as a next-generation social vision.

In the roadmap prepared for government growth strategies in 2019, BIM in private construction will be promoted by 2025, and the goal is the same as *i-Construction*, that is 20% productivity improvement.

To achieve BIM promotion in the private construction sector, the *BIM Promotion Roundtable* was established under MLIT, Housing Bureau Building Guidance Division in April 2019.

At the *BIM Promotion Roundtable*, 5 WGs on the following themes were set:

- WG1. Establishment of standard BIM workflow.
- WG2. Development of object library.
- WG3. BIM support for building confirmation.
- WG4. Investigation of quantity survey and building classification code for BIM.
- WG5. Development of common data environment (CDE).

As a first fruit of the *BIM Promotion Roundtable*, the first edition of the standard BIM workflow was launched. In FY2021, MLIT Housing Bureau Building Guidance Division planned to carry out a demonstration experiment with a budget of 200 million yen for the purpose of demonstrating and improving the workflow for the second consecutive year.

In FY2020, the use cases were studied for 8 cases to be subsidised and related 14 cases, which mainly provided by major companies that utilise BIM. In FY2021, MLIT planned to expand the scope of the subsidy to include cases of small and medium-sized enterprises (SME) and enhance the examination of use cases.

As technology development for i-Construction, research and development investment is being carried out by the Public / Private R&D Investment Strategic Expansion Program (PRISM), a budget of 2.3 billion ven was allocated on R&D investment for FY2021 for the fourth consecutive year. Of this, in architectural building-related matters, 117 million yen for building a BIM object library, 81 million yen for developing a BIM building confirmation and 24 million yen for developing the common data environment (CDE) were allocated under the supervision of Building Research Institute (BRI). In this R&D, the BIM object library as a providing environment and a draft code of practice for BIM building confirmation has been developed. These results will be positioned as WG achievements of the BIM Promotion Roundtable and will lead to social implementation. PRISM plans to continue until FY2022, and by that time the goal is to develop a common BIM usage environment for building production.

Awareness/Uptake

The BIM Promotion Roundtable was built from most of the private side parties representing building owner/promoter, architecture, engineering and construction and from government parties. In the roundtable very enthusiastic arguments about promoting BIM are made.

The role of the consortium is growing with respect to PRISM R&D investment. The BIM Library Consortium Japan (BLCJ) was established for the creation of the BIM object library before the PRISM investment began, and a research committee was established for the BIM building confirmation corresponding to PRISM R & D, and the related construction related organisations, private companies involved in design, construction and parts production, and software vendors cooperated with these consortium and committee. They are working to develop a common BIM usage environment.

As for the trend of AEC field, it became a hot topic that a major Japanese house builder

company acquired BSI (British Standards Institution) Kitemark in 2021, which is ISO standard certification, for ISO 19650 part 1 and 2 (CDE). This is a good case of how the understanding of the use of BIM is progressing in Japan as well.

On the other hand, according to rapid announcement of the BIM National Survey as described previously, a considerable proportion of the AEC field answered that there is no inconvenience in the current CAD design, and it has been pointed out that it is necessary to appeal to not only AEC party but also general citizens, mainly building owner/promoter the benefits of using BIM.

In Japan, the impact of the global pandemic is no exception to AEC field, and there is growing interest in the digital transition on building processes. MLIT has decided to abolish the seal required for building documents to applicants or architects in response to the government's measures to promote digital procedures. This alleviates the need for electronic signatures, which has been considered difficult until now, and discussions are underway on new e-submission methods.

NETHERLANDS

Education/Training

BIM is taught in all three technical universities of the Netherlands at both Bachelor and Master levels.

All 14 universities of applied science with a built environment department are organised in the BIM Education Network by the national Building Digitisation Council (BDR). The network aims to exchange and develop educational approaches, experiences, and teaching materials. In practice, the member universities tend to stick to their own approach.

The Netherlands has over 40 institutions for intermediate vocational education (ROC's). BIM adoption by these institutions is also rising.

There are many commercial post-educational training providers, often connected to software companies. Their training is often considered to be more up to date than the courses taught in formal education.

In general, it is noticed that there is an abundance of education and training at the level of mastering specific (software) tools. There are considerably less courses focussing on roles, such as modeller, work planner or BIM coordinator and there is a fundamental lack of approaches that place the building process at the core, and how digitisation changes that process.

Initiatives/Organisations

The BDR is the successor of the former Building Information Council (BIR) and aims to develop strategic policies for BIM in the construction and civil works industry.

In 2019, the *DigiDealGO* was launched as an initiative to speed up the digitisation of the built environment. One of its main objectives is to foster the development of a digital framework for the built environment (DSGO).

The BDR's BIM Education Network was created in 2013 to raise BIM awareness among lecturers. In 2017 the network presented its first version of the minimum BIM level for BIM knowledge graduates of all 14 universities of applied science.

The BIM Education Network organised its first annual BIM education conference in 2017. This conference was successfully repeated in 2018 and 2019.

Awareness/Uptake

There is strong growth in the diversity of educational offerings. In particular the essential 'soft skills' and organisational change are increasingly being discussed.

There is also a strong undercurrent in the development of BIM-based quality assurance.

The development of knowledge leaflets by the BIR has helped create greater awareness in the industry about opportunities and possibilities created by using BIM.

At this moment 5 knowledge leaflets have been developed and translated into English.

NEW ZEALAND

Education/Training

As BIM has continued to move towards being business-as-usual, though only in commercial construction, the education sector has followed.

This has seen most, if not all, training institutions include BIM specific content in their existing papers or added new BIM specific courses. Typical courses "enable students to explore current issues and advances in the use of Building Information Modelling (BIM) within the construction process".

BIMinNZ provide several training resources including *BIM101 - An Insight seminar booklet* and a guide on BIM Productivity benefits to assist industry with "a case for using BIM with real examples of the economic benefits it can deliver".

The NZ Institute of Quantity Surveyors have collaborated with their Australian sister organisation to produce a *BIM Best Practice Guideline* "a guide for quantity surveyors, cost managers or cost estimators looking to be involved with a project using BIM".

Initiatives/Organisations

BIMinNZ has continued to run quarterly BIM networking seminars in Auckland, Wellington, and Christchurch which are well attended with a wide representation across the construction landscape. They arrange a variety of presenters covering academic research initiatives, industry presented case studies, latest best practices from vendors and the like.

The Building Innovation Partnership, an industry, government, and university research collaboration, is getting underway on its seven year research programme focused on improving infrastructure planning, design, construction and management processes, and the development of engineering solutions that improve the resilience and affordability of our built assets.

They have three themes:

- Theme 1: Better Investment Decisions with an initial focus 3-waters.
- Theme 2: Enabling Integrated design, Construction and Operation looking at BIM/Data Analytics/AI/Digital Manufacture/Digital Construction.
- Theme 3: Fit-for-Purpose Building Components with an initial focus into non-structural elements.

Construction Information Ltd (CIL) have continued to work with government and industry on developing and implementing the NZ Asset Management Schema (NZAMS). CIL's intention is that the NZAMS will provide a framework for BIM innovation through the supply chain.

Research shows that around 50% of asset owner and managers are integrating digital asset or spatial information with asset management systems or looking to do so in the next twelve months while most others are aware of the concept and may look at it in the future. The research concluded that the inability to make the most of BIM models and data, post-construction, and the lack of a base model and existing conditions information can make adding BIM to major upgrades a costly exercise. A common schema is part of the solution for this.

Currently asset owners define their own metadata requirements and the deliverers of projects are required to collate the information for project handover. Invariably this results in each project defining a project unique metadata requirement in the BIM execution plan and manual processes to create and collect it.

If a common standard can be established that is widely adopted by asset owners, it will create an incentive for the supply chain to invest in creating content and tools to facilitate the automation of information management knowing that this can be reused across multiple projects and for different purposes.

To support this industry adoption, CIL are developing a web-based toolset that enables users to navigate the schema and be able to define their organisation specific information requirements.

The schema and tools are being piloted with the view to adoption by the Christchurch City Council, the University of Canterbury, and the Ministry of Education.

BIMinNZ released the third version of the *NZ BIM Handbook*. The aim of the New Zealand BIM Handbook is to promote the use of BIM and its benefits and to create, maintain and operate quality built assets in New Zealand. Developed in partnership with industry at every step, the Handbook is for New Zealand's building and construction sector but draws on best BIM practice from around the world. The handbook follows the normal progression of a project, from project establishment through to operation, and documents a consistent

approach, using a common language, to BIM in New Zealand.

Awareness/Uptake

The BIM Benchmark survey was run for the sixth year in 2019. It follows an industry control group of large and influential organisations in New Zealand's built environment. The number of projects using BIM has plateaued at 59% after only a slight increase in 2018.

"BIM is still not the status quo for undertaking construction projects. We have to weigh up the costs of BIM against the benefit of having the as-built data in model form. This is sometimes difficult to justify."

The expectation is that BIM use on projects will increase, but this has been the case for several years and the increases have not flowed through to actual uptake.

NORWAY

Education/Training

All universities within building and civil engineering in Norway provide courses about BIM and digitalisation and several of these courses include the open digital buildingSMART standards as a formal part of the curriculum. The Norwegian University of Science and Technology (NTNU) has established a 2-year master program in digital construction processes and four university colleges in Norway offer one-year programs in BIM-specialisation. In addition, the NTNU has now established a VDC-Certification program in collaboration with the Stanford Centre for Professional Development.

The increasing market demand for BIM competences in the building and construction industry is driving the need for specialised education. BuildingSMART Norway supports BIM education to raise awareness about the importance of digitalisation for the building and infrastructure industry. There are approximately 50 bachelor and master thesis in BIM each year, where bSN members act as industry partners.

Initiatives/Organisations

The buildingSMART Professional Certification program is now available in several countries, in Norway we expect to implement this certification program in 2023.

The program is an international education benchmark with focus on openBIM format and is based on ISO 19650. The goal is for Professional Certification to become a requirement in the building and construction industry for BIM projects.

buildingSMART Norway has 140 plus member organisations, representing 25% of the total AEC industry turn-over. 10% of buildingSMART Norway members are from the educational sector. buildingSMART Norway coordinates several industry initiatives and BIM User Groups for all disciplines, in a series of arenas. buildingSMART Norway's network activities has strongly increased during 2020. Together with several Norwegian organisations and members, buildingSMART Norway is involved in the development and revision of National and International standards for digitalisation of business processes.

In order to achieve a better understanding of BIM, open standards and digitisation processes and to promote best practices from the industry, buildingSMART Norway has

started a webinar series in collaboration with our members organisations.

Awareness/Uptake

The Government and its legislative body the Norwegian Building Authority are fully aware of the need for digitalisation in the building and construction industry. The Building Authority runs and supports several initiatives in collaboration with industry.

Several projects that show a good use of openBIM are on-going in Norway. In 2020 three Norwegian's were nominated as finalists at the buildingSMART Awards Program with two of the three Norwegian finalist winning a prize under the categories Client Leadership and Technology Leadership.

Finally, the focus on the use of openBIM and data interoperability is moving from the project phase to include also the operational and maintenance phase of a building, with Asset and Facility management integration. Extensive work is also going on for potentiating an open data flow for construction product information.

SINGAPORE

Education/Training

BIM education in Singapore builds a pool of competent workforce to support the Integrated Digital Deliver (IDD) ecosystem, through the infusion of BIM curriculum in all Institutes of Higher Learning (IHL) Built Environment (BE) courses.

There are 11 Institutes of Higher Learning (IHLs) providing full-time and part-time programmes with BIM/VDC (Virtual Design & Construction)/IDD (Integrated Digital Delivery) curriculum. Third-party BIM software educational vendors were also crucial in training, especially for professionals. To date, close to 18,000 students and professionals have been trained in BIM/VDC/IDD.

The Institute of Technical Education (technical college) have integrated BIM, mainly on software capabilities, into their skill qualification programmes for architectural space design, civil & structural engineering design and facility systems design.

All five polytechnics provide BIM modules in the three discipline streams and beyond, such as in sustainability-related programmes. Customised programmes for firms are also offered to address skill gaps of staff performing IDD-related roles.

Five out of six autonomous universities offer BIM modules in their bachelor and master programmes. Nanyang Technological University and the National University of Singapore have also launched Centres of Excellence in BIM to focus on nurturing BIM R&D capabilities.

The Building and Construction Authority's (BCA) education arm, the BCA Academy, takes the lead in developing the IDD competency of the built environment sector across the entire value chain.

To help the industry go digital with IDD, the BCA Academy offers academic, career conversion and Continuing Education & Training (CET) programmes that are aligned to the IDD skills and competencies requirements needed for various job roles.

BIM/VDC/IDD content will be incorporated into all the Integrated Work-Study Diploma

programmes which the BCA Academy will be launching in late 2022, covering various disciplines across the construction value chain. These programmes will provide a pipeline of fresh graduates with strong IDD skills and disciplinary knowledge that enable them to work in a collaborative environment. The graduate and post-graduate degree programmes offered jointly with universities, such as Singapore University of Social Sciences and the University of Newcastle (Australia), are also infused with IDD curriculum.

CET IDD programmes include the application of data analytics (e.g. analysis of data to identify bottlenecks), and artificial intelligence in construction (e.g. multiple design options – optimised based on the developer's requirements – can be quickly generated based on machine learning of previous designs).

With the launch of Skills Framework (SFw) [see below for more details], individuals, companies and training institutions can make use of the SFw to know how to chart digital delivery management career pathways and mapping of IDD courses in the built environment sector.

Together with Workforce Singapore (WSG) and SkillsFuture Singapore (SSG), structured career conversion/skills upgrading programmes for mid-career entrants into BE sector were introduced. This included Professional Conversion Programme (PCP) for BIM Professionals, Specialist Diploma in Building Information Modelling (BIM), Construction & Asset Management (SkillsFuture Work Study Programme) and more recently, Diploma (Conversion) in Integrated Digital Delivery (Built Environment). Concurrently, in the area of Career Conversion & Reskilling, a structured reskilling programme for redeployment of existing staff to take on new job roles within the firms was also developed.

To enable professionals to upgrade knowledge and skills, BCAA organises seminars, workshops and a suite of IDD short courses such as in the areas of BIM Modelling, Computational BIM, BIM for Building Lifecycle and Facility Management as well as Data Analytics.

In tandem with the introduction of Integrated Digital Delivery (IDD) Implementation Plan by BCA, *Principles of Integrated Digital Delivery* was launched to reach out to a wider group of built environment stakeholders and equip them with clear understanding and aligned knowledge on IDD.

Building on this fundamental course, a course on *IDD Project Implementation* was designed and will be offered as a customised valuechain based training approach to guide adoption of IDD and enhance collective learning for the project value-chain stakeholder to derive integrated outcomes.

Initiatives/Organisations

The BCA formulated the 1st BIM Roadmap in 2011 to drive the adoption of BIM under 5 areas:

- Public sector taking the lead.
- Promoting success stories.
- Removing impediments.
- Building BIM capability and capacity.
- Incentives for BIM adopters.

By 2015, the 1st BIM Roadmap achieved BIM adoption in most of the larger consultants and contractor firms in the industry. The 1st BIM Roadmap also saw the adoption of BIM in 102 public projects, 181 projects meeting mandatory BIM electronic submission requirements, SGD20 million committed to more than 700 firms who achieved an average of 21.5% efficiency gain, launch of the Singapore BIM Guide, Essential BIM Guides, BIM e-Submission guidelines and software-specific template guidelines.

The 2nd BIM Roadmap was launched in 2015, to advance the use of BIM in an integrated manner over the building life-cycle under 4 areas:

- Focus on VDC:
 - Driving BIM collaboration throughout value chain.
 - . Building BIM capability of specialist contractors.
 - . New training programmes and facilities (such as the Centre for Lean and Virtual Construction) at all levels.
- BIM for Design for Manufacturing and Assembly (DfMA).
- BIM for Facilities Management and Smart Buildings.

Research & Development.

As part of Singapore's Construction Industry Transformation Map (ITM) launched in October 2017, IDD is one key area identified to transform the built environment sector. Enabled by BIM. IDD facilitates built environment sector firms and professionals using ICT technologies, solutions and platforms across the entire building process from design, fabrication, to assembly on-site, as well as operations and maintenance of buildings. IDD has been implemented in many projects in the past few years. It will bring about benefits such as improving collaboration between stakeholders, improving construction efficiency, minimising costly rework, and delivering smarter buildings.

The IDD Implementation Plan, launched in November 2018, encourages built environment sector firms to go digital. The three focus areas under the Plan include:

- Raising awareness on the benefits of IDD through demonstration projects.
- Developing the IDD ecosystem, with enabling solutions, platforms and standards.
- Strengthening the industry's competency in IDD.

The BCA also engages industry leaders through the new IDD Steering Committee and subgroups, as well as practising BIM/VDC/IDD experts from various disciplines both upstream and downstream through the Trade Associations and Chambers (TACs).

The BCA Academy also works closely with Trade Associations & Chambers (TACs) to provide upstream support in IDD training and outreach contextualised to their specific fraternity and practice. The Singapore Contractors Association Limited (SCAL) Academy has also trained more than 900 industry professionals from its member firms in BIM software. The Singapore Institute of Architects also holds programmes engaging their members in digital management and implementation.

Transformation of the Built Environment sector will create new job opportunities but will also require some existing job roles to be redesigned to keep up with evolving trends. Hence, BCA, SkillsFuture Singapore (SSG) and Workforce Singapore (WSG) have worked

closely with the industry, trade associations and chambers (TACs), unions and education institutions to co-develop the Skills Framework (SFw) for the Built Environment (BE) which was launched in September 2020. The framework provides key information on the sector, career pathways, occupations and job roles, as well as existing and emerging skills required for the BE sector. It outlines possible career pathways across or within eight career tracks, one of which is Digital Delivery Management (DDM).

The DDM track involves the adoption and implementation of up-to-date emerging digital technologies to optimise operations and processes, improve collaboration and enhance work efficiency. This includes the provision of training to uplift digital capabilities, development of digital solutions and redesign of workflows supported by competencies such as 3D modelling, mixed reality, data analytics and process reengineering.

To provide validation for the relevant IDD skills and competencies identified in the SFw and to uplift the standing of the BE professions, BCA had worked with buildingSMART Singapore (bSS) to roll out the DDM Accreditation Scheme in the first half of 2021. This scheme ensures firm or project level digital initiatives are managed by qualified professionals to deliver the intended project outcomes.

Awareness/Uptake

BCA continues to organise the annual International Built Environment Week (IBEW) to provide a platform for industry leaders and renowned professionals from the global built environment industry to exchange ideas and experiences on policies, business solutions and technologies, as well as explore business opportunities.

SOUTH AFRICA

Education/Training

Since the start of the global pandemic, there has been much emphasis on digital transformation with both private and public sectors within the South African construction industry. This pandemic has forced many companies to literally transform their ways of working overnight. Forcing digital construction to become part of research and development on projects within the private sector, universities and technikons (post-secondary institution of technology) have also connected more now with professionals in both research and educational areas.

The successful launch of Exceptional BIM online education programme in May 2020 has created a strong education awareness in the diversity of educational offerings to hundreds of individuals and companies.

In particular, the essential free 'software skills' online training has been made available with its ecosystem partnership with various global technology vendors and experts. The exceptional BIM educational platform is a movement to provide learners globally with the opportunities to develop their fullest potential throughout life, regardless of their starting points. Through this movement, the skills, passion and contributions of every individual will hopefully drive a digital built environment next phase of development for Africa and other developing countries towards an advanced global economy and inclusive society.

The BIM Academy Africa still continues to provide consulting to much needed individuals and companies within South Africa and its neighbouring countries and has recently been working closely with Black Business Council for the Built Environment (BBCBE) in developing an education roadmap for academia within the built environment.

There is still a slow undercurrent in the development of BIM-based standards and awareness within construction companies and supply chain companies. They want to be prepared and they are thinking of how to implement new digital ways about their products into 3D and other software, but are waiting upon government sectors to provide a digital annex or building standard as a guideline. There is still a slow interest around facility management and the usage of BIM, which has caused a slow development of new software tools and methodologies within the sector.

Rising consciousness of BIM in the South African communities is on the increase as the local government prepares long term plans for Industry 4.0 roadmap. Although there is much needed support required to search for modern construction technologies and digitisation within the local CSIR organisation, there has been much interest from the BBCBE who have taken the BIM Institute under its wing to help drive new education and policy making for the built environment.

Initiatives/Organisations

There have been other BIM awareness initiatives taking place through local BIM online seminars, workshops and presentations led by a new social group called BIM Community Africa, with the aim to create a BIM community for Africa that is driven by the community itself. However, there is still a slow uptake among many asset owners and developers between benefits or BIM field experience.

There is still no public agency of study or national annex or digital standard which would directly focus or drive BIM or digital engineering education. Other obstacles are for example: lack of standardisation of BIM in South African building standards and policies among government agencies, insufficient education programmes in the tertiary education programmes, lack of local BIM case study materials, and lack of government funding.

There are several BIM documents published and many others have been prepared under various academia wings to help promote BIM within South Africa, which intime will hopefully play a key role in the negotiation with ministries and standard bodies.

Design professionals within the AEC industry still largely consider BIM solely as a software tool and still use the term BIM loosely on projects within the design stages, failing to fully understand the full process and protocol within the project life cycle.

Awareness/Uptake

In South Africa, the construction industry remains very heterogeneous in terms of integration of design technology and BIM, due to the fragmentation of the cultural and policy player types, which are mainly the professional association bodies.

Numerous significant advances have been observed in different commercial domains, led by actors looking for new values for building, infrastructure and public works.

In January 2021, South Africa's construction industry united to form an umbrella body, Construction Alliance South Africa (CASA). The founding members are 29 of the sectors' professional, contractor, supplier and other bodies. CASA is gearing up to lead a postpandemic recovery of the industry, and also tackle other long-standing industry challenges. Key issues will include, accelerated transformation of the sector. Foreign dumping of sub-standard construction materials in Africa and Dealing with corruption, anti-competitive behaviour and unethical business practices. Although the appointed Task Team will be instrumental in co-ordinating and presenting the industry's thinking on the national economic recovery plan, albeit, there is no indication within its plan to promote BIM uptake within the built environment.

SWEDEN

Education/Training

The upper secondary school (gymnasium 16-19) have today CAD-related practical learning goals in their curriculums for all the 303 school units in Sweden that includes a program of technology (teknikprogrammet). Of these 303 school units are 54 specialisations in civil engineering where the CAD activities focus on BIM related learning. An initiative is also taken, to develop applied BIM competences for teachers within the vocational education system including construction and installation, which was started up in the fall of 2020.

At universities, the education of BIM-related knowledge is now turning from a technical focus on modelling, information transferring and visualisation to be complemented with management-related assignments with collaboration, requirements management and organisational strategies with BIM. Practical BIM-knowledge in software and information generation is now more organised to selflearning exercises and learning is then applied with a focus on project-based use of BIM in the construction processes. Examples of BIM coordination, seamless flow of information in systems and simulation of multidisciplinary scenarios are now applied in the university educations. The updated mapping of BIM courses and courses with BIM related tasks is stable from the universities with following data.

Data from the university mapping shows that:

- 8 Master programs (300 HP) offer BIM education in Sweden.
- One new Master program starts in the fall of 2022 with focus on BIM and digitalisation of construction at Linköping University.
- 21 Bachler programs (180 HP) offer BIM education in Sweden.
- 11 2-year university programs (120 HP) offer BIM education in Sweden.

Swedish universities now offer almost 150 courses with BIM within a total of 875 HP which is about 14 years of study.

A number of 3rd cycle education courses (for Ph.D students) in industrialisation and design automation has been developed and conducted in the year of 2019 and 2020 in the field of BIM and digitalisation in Smart Built Environment. These courses are a part of the national strategy to change Construction to a

sustainable industry by digitalisation and industrialisation. Both courses have been further developed and executed in the year of 2021 with Ph.D. students from universities all over Sweden.

Initiatives/Organisations

During the global pandemic, the eighteen Swedish universities met regularly in online meetings with virtual workshops and seminars, webinars and information distribution in 2021. The organiser was the BIM Academy (as a part of BIM Alliance Sweden) which facilitated these activities with the purpose to share and contribute knowledge, educational assignments, lectures and software experiences through the network. Further information on the BIM Alliance can be found at https://www.bimalliance.se/naetverk-ochmoeten/intressentgrupper/bim-akademin/.

In the BIM Academy group in Sweden, an initiative of defining BIM Basics for Sweden was started in the fall of 2018. A structure for BIM basics is continuously under development, which gives input to national strategies for research, and development in the field of Smart Built Environment. The governmental program in Smart Built Environment started in 2015, which has a number of knowledge package to develop education within digitalisation.

The BIM Academy group, in addition to BIM basics, have during the year focused on new BIM tools and working methods, e.g. Parametric tools and generative design linked to the different stages of the construction process and how to implement these in teaching different learning activities.

Awareness/Uptake

A study of how education in Sweden teaches how digital twins are practical for onsite production in construction was conducted in the later part of 2021. The purpose of the study was to describe what opportunities there were to develop teaching with digital twins with BIM knowledge for the construction site. The subpurpose was to map current course content that focuses on the construction site and which of these elements in courses apply digital models for construction sites as an application with Building Information Modelling (BIM), Geographic Information Systems (GIS) or data models.

Results from the mapping of the current situation showed that application in courses

with a focus on the construction site comes in the latter part of the education. That is, in either the second or third year of the university bachelor programs or in the fourth or fifth year of the master engineering programs. The application of digital models for the construction site can be considered small overall and where the most common application is 4D/5D planning of the building's progression using BIM models. There is also no clear progression of knowledge regarding digitised construction for construction sites, but only different application areas. In general, few applications of either geometric models with associated digitisation or computer models handle the construction site as a focus area.

Still, there is a considerable discrepancy between the technically oriented BIM curricula at the universities and the more process and change oriented approach to BIM represented by the industry.

The trend that we have seen since 2012 is that Swedish higher vocational education schools (Yrkeshögskolor) have started two-vear programs that focus on BIM-applications for contractors, consultancy and clients. Now eight educational programs, as a complement to universities, have embraced the need for practical BIM knowledge for site construction and the relationship between design and construction site-related BIM is not as skewed towards design, but a more even distribution between different courses and assignments. Six of the eight educational programs have a number of practical BIM-assignments where students learn how to use models and related data for site based construction.

In the 2-year BIM-related vocational schools, about 15-40 HP (of 120 HP) was focusing on BIM related course assignment, while only 6-18 HP (of 180 to 300 HP) for the same application. The ongoing BIM-education that was started in 2020 by the Swedish government has introduced shorter courses with the higher vocational education system in an initiative to up-skill and re-skill competence within the workforce.

In addition, an initiative for practical education in the upper secondary school started in 2021. This initiative resulted in a number of new BIM-courses for the employees within the construction industry. A number of workshops and the development of learning packages for these courses on practical BIM commenced in 2021.

The project InRoad was started to develop an all-new intensive course programme for cross-disciplinary road infrastructure design in a digital age for higher education institutions in a global context.

The project aims to develop a range of new didactic teaching tools with special focus on using a digitalised workflow and tools accordingly. These tools will be handled and described regarding their core engineering theory and methods and also communicative demands.

The outcome of the project, both the developed curriculums but also the results from the assessment will be presented in other European countries and will be made available online for free to all who are interested.

The project is a collaboration between Aalborg University, Jönköping University, NTNU and University of Oulu, and is funded by EU Erasmus and the program for strategic partnerships for higher education.

SWITZERLAND

Education/Training

Generally, the number of training intuitions is growing slowly with courses offering more in depth content. The fields include VDC, GeoBIM, Digital Construction, Coordination BIM, BIM2SIM, BIM for FM, Mixed Reality and Artificial Intelligence for BIM to name a few and finally BIM Certification.

Several partners provide this part in Switzerland: Focussing mainly on open BIM, technical universities and universities of advanced sciences offer a wide range of courses at an undergraduate and postgraduate level.

The universities in Zurich and Lausanne both push BIM forward by offering CAS, DAS and MAS programs:

- The ETH Zurich (University of Science and Technology Zurich) additionally runs two research labs: The BRG (Block Research Group) and the National Centre of Competence in Research (NCCR) Digital Fabrication.
- Apart from the above-mentioned programs the EPFL (Ecole polytechnique fédérale de Lausanne / Swiss Federal Institute of Technology) researches on a BIM based classification of building performance data for advanced analysis.
- Also, the universities of advanced sciences offer undergraduate programs as well as continuing education.
- The study program of the Institute for Digital Construction at the FHNW (University of Applied Sciences and Arts North-western Switzerland) focuses on changes triggered by digitalisation. The integration of VDC (Virtual Design and Construction) in all disciplines of construction has a clear priority.
- At ZHAW (Zurich University of Applied Sciences) the continuing education concentrates on the field of Facility Management and Life Cycle Costs including BIM.
- The BFH (Berne University of Applied Sciences) also offers a CAS in Digital Planning, Building, and Using.
- The study course Digital Construction focuses on Building Technology and Structural Engineering at the HSLU (Lucerne University of Applied Sciences and Arts). This is the only program in the field of digital construction in Switzerland and is unique in Europe due to its interdisciplinary structure. The

continuing education offers courses in Simulations with BIM as well as developing competences for the ordering process.

- The continuing education at the HEIA Fribourg (University of Applied Sciences and Arts – Western Switzerland) includes a CAS in BIM Coordination.
- The University Ost (East) at Rapperswil joins in with the module BIM Basic Education including the buildingSMART Certification Program.

Increasingly private training institutions take over a major role in the training field. Basler & Hofmann, CRB, Objectif BIM or WEKA can be listed here. Likewise, vocational schools in St Gallen, Sursee or Berne offer more and more courses in the field of BIM.

Software providers push mainly and not surprisingly the closed BIM side. For non-academic professionals, who plan to grow into the BIM area an increasing number of trainings are offered. Yet trainings and educations on a more basic level are still very rare.

Initiatives/Organisations

In January 2018, the Swiss chapter of buildingSMART started to take action. It is closely connected to Bauen digital Schweiz, an initiative of SIA (Swiss Society of Engineers and Architects), CRB (Swiss Research Centre for Rationalisation in Building and Civil Engineering), KBOB (Coordination conference of the building and real estate bodies of public clients), and IPB (Association of private, professional builders), being the legal entity for the chapter.

One year later, the Swiss chapter started the Qualification Platform, which is used by numerous providers all over Switzerland, including the German, French, and Italian speaking regions.

In contrast to the closedBIM promoters, the buildingSMART Certification Program offers courses strengthening the open approach. The Swiss chapter increasingly oversees the registration of new training providers thus becoming an important player in BIM-related education. By now, 18 training providers are registered with 725 individuals certified.

Awareness/Uptake

Professionals are increasingly aware of the fact that continuing education becomes important especially as far as BIM is

concerned. Over the years, an increasing number of events and courses on this topic popped up all over the country. Additionally, the Swiss BIM Congress came into life in 2016 and is implemented on a yearly basis. However, due to the pandemic, this event was postponed in 2020.

As a new platform the openBIM Forum started at beginning of 2019. A congress driven by the major BIM software providers with overaverage content delivered by first movers in the BIM market (architects, planners, contractors, owners).

In fall 2018 the Federal Council adopted its strategy, *Digital Switzerland* for the next two years, demanding in its action plan that the federal government and all federally affiliated companies make the BIM method mandatory from 2021 for real estate, and from 2025 for infrastructure facilities.

Together with the pandemic in spring 2020, this will have a deep impact on virtualisation and digitalisation of the building industry. Being reluctant to, or unskilled, in using digital tools, many are now (more or less) forced to apply digital media due to working from home.

Consequently, most of the courses were carried out virtually, be it for short or long-term sessions. This led – and is still leading – to a change in the acceptance, understanding and appreciation of digital processes, where BIM is part of.

Under the direction of *Digital Switzerland*, the Swiss Digital Day aims to make digitisation a tangible experience and promotes dialogue on the subject. The events encourage collaboration, new ways of thinking and vibrant debates on varied topics. One of these, of course, is BIM.

In June 2021 the BIM Industry Days, initiated by the SBB (Swiss Federal Railways), came into life. Based on a six-point plan, partners were invited to contribute to reach common goals. As one outcome, an initiative of training providers was established to unify and strengthen a targeted education.

TAIWAN

Education/Training

Architecture, Civil Engineering, and Construction related university or college departments used to teach CAD and visualisation/animation tools, e.g. AutoCAD, Sketchup, 3Ds Max, Blender, etc., in their required curriculum. Since around 2010, BIMrelated courses have been increasingly introduced into these departments. Taking the Civil Engineering Department at National Taiwan University as an example, it starts from offering an elective course called Technology and Application of BIM (3 credits) and gradually offers more advanced BIM related courses in its curriculum. For facilitating the access to BIM education for not only college students but also professional engineers, the department also provides online courses, such as BIM Fundamentals and BIM Applications, on Coursera, a popular global massive open online courses (MOOCS) platform, and NTU's OpenCourseWare (OCW). These courses, including both physical and online ones, were originally taught in Chinese, but, in recent years, English-taught ones have been offered and the online ones have attracted more than 50 thousand learners so far. Besides, BIM Summer Program has been offered at NTU since 2014 for students from abroad. The goal of the program is to help students understand the fundamental concepts of BIM, and acquire essential skills to use BIM tools such as Autodesk Revit.

The WorkSkills Competition (which was established by the WorldSkills International in 1950, Spain) had adopted BIM as one of its new competition subjects in 2020, and planned to hold the first competition in 2021, though eventually postponed to 2022 due to the COVID-19 pandemic. In order to join this global event, Taiwan had held a national competition in 2021 to select contestants. For the BIM subject, the contestants must be under the age of 25, and the content of the competition is to reflect the WorldSkills Occupational Standards (WSOS), which includes work organisation and management, software and hardware, interpretation of the client brief, modelling, coordination of models, corrective modelling, data extraction, and visualisation.

Besides education programs provided by universities and colleges, architecture related programs in several industrial senior high schools have introduced BIM into their curriculum. Furthermore, several research institutes in Taiwan have offered a variety of education and training courses. For example, Taiwan Architecture and Building Center (TABC) is currently offering a series of courses on Application of BIM to architecture design, MEP practice, interior design, facility component modelling, quantity take-off, design integration, construction supervision, etc., as well as integrated application of BIM and GIS. The courses provided by Taiwan Construction Research Institute (TCRI) focus on Application of ISO 19650 BIM standards to project management and information exchange.

Initiatives/Organisations

In 2009, the BIM Research Center at National Taiwan University (NTU BIM Center) was established to provide a platform for industry-academia-government collaboration on BIM adoption and applications in Taiwan. This signified the beginning of active involvement from academia in helping the industry and government for BIM adoption. Since then, some universities and companies in Taiwan started to establish their own BIM centers.

In 2011, the Chinese Institute of Civil and Hydraulic Engineering initiated the biennial Taiwan BIM Awards competition among construction projects and the first awards were given to 5 BIM application projects. It was clear to see that the scope of BIM applications has been expanded from mainly the design and construction phases in early days to the whole life cycle, including building permit application review and facility management.

In 2015, Taiwan BIM Alliance was established by the NTU BIM Center with the support from Taiwan's Ministry of Science and Technology to use BIM as a driver to upgrade Taiwan's construction industry. The Alliance accepts only sector members, and up to March, 2022, the Alliance has 53 industrial sector members, 6 governmental sector members and 18 academic members.

The Taiwan BIM Task Group formed in 2018, the initiated members are the British Standards Institution (BSI), NTU BIM Center, Taiwan BIM Alliance, Taiwan Construction Research Institute (TCRI), Taiwan Architecture & Building Center (TABC), and Taiwan Institute of Built Environment Lifecycle Management. The goal of the task group is to help Taiwan's construction industry to apply BIM as a stepping stone for transformation into the digital era, and eventually achieve the goal of sustainable and smart living.

Awareness/Uptake

In 2014, Taiwan's central government started to promote BIM Applications. After a few years to test run BIM applications in some public construction projects, almost all major national projects are requiring BIM applications now. Several local governments, especially New Taipei City and Taipei City, require BIM applications in their public construction projects, helping push the industry to be BIMready. One particular government effort to mention is the New Taipei City government's implementation for a BIM-based building permit application review platform that requires submission of BIM models for automated review of design regulations for building permit applications. Also, design-build projects are mostly encouraged for BIM applications in Taiwan. However, Taiwan has not established national BIM standards yet. Only some local governments or National agencies have developed their own guidelines for BIM applications.

From the 2013 Taiwan BIM Awards, it is obvious to see the increase of BIM adoption in the industry during that period of time and there were more BIM applications by construction companies and owners. BIM applications by engineering consulting firms were not only more matured but also extended to assisting the construction partners in the construction stage. One of the largest construction companies in Taiwan, demonstrated how they applied BIM for construction management and made sure the BIM model is the only and up-to-date source for consistent construction drawings. A new BIM service company span out from the construction company working on the National Kaohsiung Center for the Arts project. It started to provide BIM-based construction management tools as services to other construction companies.

Most major design firms in Taiwan have a high degree of BIM capability to handle BIM design projects and continue to deepen BIM applications into their design process. Recently they have started to use BIM as a driver to transform their design process for achieving design automation. They also provide BIM services for the owners and construction firms. One engineering consulting company has developed facility management tools for owners to manage maintenance and operations of public infrastructures.

For a local leading consulting firm in Taiwan, BIM techniques are used not only in design

stages for collaboration but also in construction stage, especially for health and safety issues. This firm developed a photogrammetry-based procedure to build VR scenes integrated with BIM models. Site engineers can realistically experience different situations through VR helmets before real construction starts. This helps a lot in personnel training to avoid dangerous actions and save lives.

For most major construction companies in Taiwan, although they have different focuses and degrees of BIM applications in their construction management, they are all aware of what BIM applications can help them in preconstruction examination on design integration and constructability, construction management coordination, quantity take-off, quality assurance, risk elimination, construction safety, etc. Several companies have already integrated or started to integrate BIM applications into their project management systems, including development of APPs on handheld devices for construction quality inspection and issues management. One construction company has also developed a BIM-based facility management system for a public construction project.

After so many years of BIM promotion and applications in Taiwan, major designers and contractors in the construction industry have all been equipped with good BIM capabilities, more and more owners, including governments, are currently requiring BIM applications for facility management.

With the availability of BIM-related ISO standards, several design firms and construction companies in Taiwan have completed ISO 19650 series certification. One of them even qualified for the ISO-19650 Parts 1, 2 and 5 BIM Level 2 Kitemark Certification, which is the first construction company in the APEC area to complete this certification. In 2021, three experts from the same construction company were successfully awarded the international BIM Qualification -**BSI BIM Project Information Certified** Professional. As the first pilots globally, they were also the first BIM managers in Taiwan to be awarded the recognised personal certificate to demonstrate BIM competency in a formal way. This also indicates the determination and maturity of construction companies in BIM applications. It can also show that construction companies in Taiwan have been fully aware of the necessity of implanting BIM standards into their business process.

UNITED KINGDOM

Education/Training

The BIM Academic Forum (BAF – discussed later) published *Embedding building information modelling (BIM) within taught curriculum* in 2013 and *Current position and associated challenges of BIM education in UK higher education* in 2015. The latter report indicated that BIM is now becoming widespread across the various levels of higher education, albeit ad hoc and without consistency. In the main, this tends to be driven by individual academics or schools/departments that have a particular interest in the area of BIM and recognise its importance in the education of professionals.

Over the last few years, a number of BIM specific programmes at Masters level have emerged. A number of BIM specific BTEC level programmes have also now begun to emerge. Apart from architecture and construction related disciplines, there are overall low levels of interest in BIM incorporation in teaching across built environment related disciplines. At the cutting edge where BIM is fully embedded into programmes/modules, architecture maintains a significant edge over all other built environment disciplines.

BAF held its first international conference at Glasgow Caledonian University, 13th-15th September 2016. This brought together delegates from both industry and academia to discuss aspects around Education & Training, Process & Standards, Strategy & Implementation, Knowledge Management & Decision Support, BIM Maturity & Assessment, Asset Handover & Operational Management, Technology. The programme also included a workshop to explore establishing a European BIM Academic Network to bring together the European national BIM academic forums. BAF are currently focusing on taking the first report of embedding BIM within the taught curriculum forward by drilling down to disciplinary perspectives at the undergraduate level. BAF are also aligning their activities in support of the UK BIM Alliance, and the Upskilling work stream, in particular.

Within the UK, Secondary, Further (FE) and Higher Education (HE) are devolved matters and in Scotland these fall within the Scottish Government's remit. According to sources published in 2018, Scotland has 26 FE and 18 HE Institutions. Although the Scottish Government acts as the funding agency for HE built environment programmes, accreditation is

normally undertaken by professional bodies (PBs). During 2019, the focus for several built environment PBs was supporting the transition from the PAS 1192 to the ISO 19650 suite of BIM standards.

The Scottish Qualifications Authority (SQA) is the executive non-departmental public body of the Scottish Government responsible for accrediting educational awards at secondary and FE levels. The SQA acts as a single awarding body to devise, develop and validate qualifications and quality-assure education and training establishments which offer SQA awards. The SQA also publishes the Scottish Credit and Qualifications (SCQF) framework which offers a structured and incremental pathway (Levels 1-12) for education and training which spans between secondary and tertiary level qualifications and maps equivalences between FE/HE provision and workplace-based learning programmes.

Within FE provision, the current suite of built environment awards is being refreshed. The SQA's Architectural Technology review team are in the process of constructing revised HNC and HND programmes. On a very positive note, it appears that within named awards, interdisciplinary activities will have a raised profile. It is likely that the BIM Professional Development Award (PDA) will be offered as an optional 30 credit Unit. The BCTG Construct funded research project hosted by Glasgow College has now published a blended learning resource to help Scotland's construction sector close technical skills gaps by offering site supervisors access to online learning resources including an introductory module in BIM.

A number of HE centres including Napier, Heriot Watt, Strathclyde, Glasgow Caledonian and the University of West of Scotland continue to engage with BIM, either through the provision of named awards and/or by embedding BIM/digital in undergraduate/postgraduate teaching and research. Pockets of expertise have developed. These include Glasgow School of Art Simulation and Visualisation facility which explores interfaces between science, technology using advanced 3D digital visualisation and interaction technologies. Heriot Watt University's Scan-vs-BIM concept has investigated the comparison of reality capture 3D point clouds with BIM models to offer opportunities for enhancement of construction project delivery, for example with

quality control across design and construction processes.

The Robert Gordon University's Scott Sutherland School of Architecture and Built Environment continues to participate in crossdiscipline built environment projects through European ERASMUS links and the International Congress for Architectural Technology (ICAT) networks. Collaboration is developed through partnerships with centres in Spain, Netherlands, Germany and Denmark. Typically, undergraduate projects develop simulated BIM projects in team-working environments framed by real-world protocols such as ISO 19650. These projects use digital media to facilitate developing an analytical approach to deep learning in areas fundamental to built environment education; site appraisal, brief development and environmental analysis.

Construction Scotland Innovation Centre (CSIC) is one of eight industry led and demand driven Innovation Centres supported by Scottish Funding Council, Scottish Enterprise, Highlands & Islands Enterprise and 14 Scottish University partners. CSIC's remit is to support businesses in delivering transformational change in construction. CSIC's BIM in Practice programme was developed to support businesses from their initial awareness of BIM practices to the continuous development of their BIM journey, offering support at all the following stages:

- Awareness: For businesses unfamiliar with BIM, introductory workshops offered an overview of the benefits of working with BIM can bring to an organisation and the practices and processes involved. These workshops were hosted at the CSIC Innovation Factory near Glasgow, by outreach at various sites across Scotland and as an e-Learning module.
- Understanding: Acknowledging that BIM requires significant investment and commitment of resources to any organisation considering adoption, the CSIC BIM For Business Leaders e-Learning Module was designed to enable greater understanding of BIM by CEOs, finance directors and other senior leaders involved in strategic decision making.
- Implementation: Covering the areas involved in implementing BIM such as People, Processes, Systems and Practices, these workshops supported

this stage in an organisation's BIM journey. Eight business focussed events were held throughout Scotland. In addition, four workshops focused on particular industry groups such as architecture and design. These workshops provided greater detail on the specifics of implementing BIM for businesses.

Since 2015, the *BIM Regions* have been actively seeking partnerships with local Higher Education Institutions. The London and SE BIM Region formed a partnership with the University of Westminster and ran a series of free BIM Events aligned to its Masters programme. *thinkBIM* is run by the Centre for Knowledge Exchange at Leeds Beckett University in partnership with the Yorkshire and Humber BIM Region. The South West BIM Region is run in partnership with University of West England. The *BIM Academy* is partnered with Northumbria University.

Design, Engineer and Construct (DEC), run by Class of Your Own, is an accredited learning programme for secondary-school age students and has been expertly developed to create and inspire the next generation of Built Environment professionals. Class of Your Own are leading the BIM4Education initiative. This initiative has recently been awarded CITB funding to get teachers and students excited about BIM and construction. One published report has shown how the DEC program has worked well in Manchester as a partnership between the University of Salford and St Ambrose Barlow RC High School.

There are now many providers of BIM training within the UK. As identified above, the BIM Regions have partnered with local universities to provide free events. Other providers of paid for content include:

- Professional Institutions:
 - Royal Institution of Chartered Surveyors (RICS).
 - . Chartered Institute of Architectural Technologists (CIAT).
 - . Chartered Institute of Building (CIOB).
 - . Institution of Civil Engineers (ICE).
 - . Building Services Research and Information Association (BSRIA).
 - . Building Research Establishment (BRE).
 - . Construction Industry Training Board (CITB).

- . National Federation of Builders (NFB).
- . British Standards Institute (BSI).
- The BIM Campus provides a six-week intensive course.
- The B1M is an online video resource which includes a BIM for Beginners programme.

Many of the AEC companies have run their own in-house training programmes which are compulsory to attend and require a certain level of attainment.

There is significant body of research being undertaken into BIM. Each Higher Education Institution has its own research programme and there are also numerous Knowledge Transfer Partnerships (KTPs) being undertaken. *KT4BIM* involves BIM4SME acting as a client to a virtual project with numerous KTPs; the objective is to achieve a Level 2 compliant project.

Initiatives/Organisations

The UK Government influenced a significant movement within the UK AEC industry by requiring the use of BIM on public sector projects in its 2011 Government Construction Strategy. The primary objective of the strategy was to sustainably reduce the construction costs incurred by the public sector. BIM was identified as one of the principal initiatives to achieve the objective and was supported by the creation of the BIM Task Group. Training and Education was one of the Task Group's four work-streams and a key output was the BIM Learning Outcomes Framework. As a consequence, there has been a significant increase in the provision of formal academic qualifications, training, accreditation and research.

The subsequent *Government Construction Strategy 2016-2020* maintained the emphasis on developing digital and data capability in construction, although the BIM Task Group was no longer funded to support the wider adoption of BIM. The formation of the *UK BIM Alliance* has taken on the mantel from the BIM Task Group and there is a work-stream dedicated to upskilling the industry. The Alliance was formed in late-2016.

The BIM Task Group instigated a community of special interest groups with the aim of "raising awareness of BIM and promoting a shared understanding of the value proposition and issues affecting the implementation of BIM", as stated in the *BIM4 Community Charter*. Each group determines their own

approach and certain groups are seen to be significantly more active e.g. *BIM4SME* and the *BIM Regions*.

The BAF is the BIM4 Community special interest group representing Higher Education. Formed in 2011, BAF consists of a group of representatives from a large number of UK universities, with the aim of creating a dynamic collaborative group to enhance and promote teaching and learning together with the research aspects of BIM, therefore serving as a conduit between industry demands and BIM education in higher education institutions.

Scottish Government aspires to be at the forefront of the digital economy and is resolute that digital technologies will form an integral part of the country's transition to a low carbon economy. The use of BIM Level 2 was introduced by the Scottish Government in April 2017 with a view to encouraging its adoption across public sector contracts.

The overall objectives were to increase efficiencies, reduce costs and promote collaboration within the Scottish construction industry. A wider ranging challenge facing built environment educators is how best to equip undergraduates with skills necessary to support industry across a range of digital-centric themes which research has identified as being key to forward travel for construction including:

- Higher definition surveying and geolocation, rapid digital mapping and estimating.
- Next generation 5D building information modelling.
- Digital collaboration and mobility, moving towards paperless projects from the office to the workforce.
- The Internet of Things and advanced analytics – intelligent management of built assets.
- Future-proof design and construction designing with methods and materials of the future.

These imperatives are likely to assume greater urgency in a post COVID-19 world as construction regroups, recalibrates and develops robust strategies to ensure survival as a viable industry.

As digitisation pushes the boundaries of BIM and what it means to a range of built environment stakeholders, there may be growing demand for built environment education to support wide ranging digital

processes which underpin the development of environmentally sensitive and necessarily resilient solutions for future buildings/infrastructure. In that context, contemporary reference standards such as ISO 19650 will fit within a bigger picture framed primarily by construction's response to the climate emergency.

Scottish Futures Trust (SFT) is Scottish Government's agency tasked with improving publicly funded infrastructure investment. SFT liaises with the public and private sectors to deliver value-for-money on all public sector infrastructure investment across the country.

The SFT's BIM Portal offers a range of online tools. These tools are designed to facilitate decision making to support BIM implementation involving the procurement of public sector building and infrastructure projects. These online resources include the SFT Grading Tool which predicts the level of BIM maturity which could be appropriately applied to a project, a return on investment calculator, whole life appraisal and BIM viewing tools.

Awareness/Uptake

The government's BIM requirements and the subsequent activity of the BIM Task Group and the wider BIM community has significantly influenced the awareness and take up on BIM within the UK. This is evidenced above by the broad range of support and resources available to via the UK BIM Task Group Website, the BIM Regions and BIM4 groups such as BIM4M2 and BIM4SME. This is supported by a frequent programme of conferences run by amongst others the professional institutions.

In addition, institutions and industry related journals have sections on their websites specifically focused on BIM, which together with the plethora of BIM-specific resources such as *BIM Plus*, support the growing awareness of BIM within the UK.

The proposed programme of the UK BIM Alliance includes a work-stream focused on Awareness and being the champion for BIM Level 2.

The Government Construction Strategy 2016-2020 indicated that progress had been made in "developing digital capability in design and construction, with all departments on target to procure assets using Building Information Modelling (BIM) Level 2 by 2016". The strategic objective within this strategy is

"increasing BIM Level 2 maturity across government will enable departments to gradually move to BIM Level 3, which would support a fully integrated and collaborative process" (point 25).

The Government in conjunction with industry will develop the next generation of digital standards to enable BIM Level 3 adoption under the remit of the *Digital Built Britain Strategy*.

In common with the rest of the UK, construction in Scotland faces many well-rehearsed challenges. A relatively small core of major Tier 1 contractors is supported by long supply chains of sub-contractors and suppliers. COVID-19 has now interrupted many projects, causing significant delays not least because supply chains have been severally disrupted.

Some of the largest construction firms active in Scotland, are UK-based, others are controlled from abroad. Low levels of investment in training and cash flow challenges are among factors which mitigate against movement away from established business models. Construction has a complex and organic structure, is risk averse, slow to react to change and does not respond well to force feeding.

Feedback suggests that the Level 2 BIM methodologies promoted by the UK Government from 2011-2016 have not had significant impact on many construction firms. Despite Scottish Government's aspiration to develop a digitally enabled world-class construction industry, engagement with BIM is perceived to involve significant risk for many of the SME and micro-organisations which comprise 90% of Scotland's construction sector by numbers.

Feedback from one university actively involved in partnering with large contractors suggests three levels of contemporary activity. At the first (highest) level contracting organisations may regard BIM as a sub-set of initiatives to digitise all business processes with a view to eliminating waste, adding value and incorporating automation where possible. That is a trajectory which moves towards the Industry 4.0 model which originated in Germany.

At the second level, contractors may be using BIM models, but often with gaps in workflows for many reasons including engagement and operational challenges within supply chains.

The third level is *business-as-usual* which suggests little or no engagement with BIM processes. It is thought that many/most housebuilders in Scotland would fit the third category. Around 1,800 firms are directly engaged in house building activity in Scotland. 8 of the country's top 150 companies are residential house builders. That profile suggests a significant gap when a key player in the Scottish construction sector does not appear inclined to engage with BIM processes.

Although various strategies and interventions continue to support the development of BIM education across FE and HE, clearly Scottish Government's support for publicly funded projects to be BIM enabled has not transformed the construction sector. Post COVID-19, sustainable development goals are likely to feature more significantly in construction education/practice for the foreseeable future. Embedding strategies for resilience into business plans may be key to the survival of many construction related businesses.

In November 2017, the UK Government launched a centre of excellence in Cambridge to champion the "digital revolution" in the built environment. The Centre for Digital Built Britain's primary function is to assist with delivery of a smart digital economy for construction and infrastructure. Central to that initiative is the concept of digital twins. The aim is to develop digital protocols which will underpin transformation of the UK construction industry's approach to planning, constructing, use and maintenance of buildings/infrastructure. In that context, the UK Government set out a clear vision and powerful agenda for harnessing the power of digital technology, data capture, and analytics. The extent to which the initiative will harmonise with or overtake ISO 19650 BIM imperatives and impact on education/training for Scotland's construction sector remains to be seen.

UNITED STATES

Education/Training

There are 118 universities, both private and public, that are accredited by the National Architectural Accreditation Board (NCARB) to provide undergraduate, graduate and doctoral programs in Architecture. The coursework, focused on BIM in particular, range from direct Autodesk Revit coursework at the Georgia Institute of Technology to BIM in Construction at Montana State University just to identify a few.

There are also community-based colleges too numerous to name that provide coursework in BIM with Revit but this coursework would not lead to an accredited degree in Architecture which is required in the US for licensure.

A good number of these universities provide research programs for advanced degree candidates focusing on a range of topics including *Design Technology* at the Georgia Tech School of Architecture and the Texas A&M University *BIMSIM Lab* which focuses on Building Information Modelling and Simulation. The University of Hawaii at Manoa also offers a Doctor in Architecture. A good number of universities now offer online Bachelor Degree programs.

The following universities provide Specialised BIM coursework either as integral to the B Arch program or as an alternative course plan: University of Arkansas, Georgia Inst. of Tech., Stanford University, John Brown University, University of Washington, University of Southern California, Penn State, Purdue University, Philadelphia University, Montana State University, California State University, Milwaukee School of Engineering, Clemson University.

Community Colleges also provide coursework, as at the Seminole State College of Florida, offering a 3-credit course for 3D modelling including Revit instruction as a standard summer course, though there are many others providing similar education.

The American Institute of Architects (AIA) has for years supported the American Institute of Architecture Students organisation (AIAS) which is an independent, non-profit organisation and completely run by students from across the country. The organisation aims to promote the advancement of architectural education in the US. The AIAS Learning, Design, and Technology Task Force provide an online tool that provides an extensive listing of software packages that graduating students may encounter in the design field.

These packages are grouped into the following categories: Drafting (CAD), Animation, Illustrative Drawing, Digital Modelling, Rendering, BIM, Diagramming and Video. Each category provides links to tutorials and instruction for the different platforms.

The Association of General Contractors (AGC) continues to sponsor and provide a structured program for those interested in a path in Construction Management obtaining certifications in the areas of Construction Management-BIM. The coursework aims to "enhance career development opportunities for individuals and improve the performance of construction companies and the industry".

The first module titled Building Information Modelling includes 32 hours of intense study. According to their website, "two national credentials for Building Information Modelling and Lean Construction. Those that complete the entire BIM Education Program or Lean Construction Education Program are eligible to sit for an exam to earn a Certificate of Management-Building Information Modelling (CM-BIM) or Certificate of Management-Lean Construction (CM-Lean)".

Initiatives/Organisations

The United States General Services Administration has produced, back in 2003, The National 2D-3D BIM Program, which has had a strong influence on the rate of adoption by the design/construction community by mandating its use on all GSA projects. The recently published "GSA BIM Guidelines for Revit" include guidelines for Data submittals, Roles and responsibilities, and technical standards and are now required as part of the BIM Execution Plan for all GSA projects. Many states, including Wisconsin and Connecticut have adopted a similar mandate with other states like Massachusetts, Utah, Georgia, Virginia, Washington and Connecticut also looking to do so.

This activity at the state level has put an onus on universities to apply more emphasis on BIM education and facility standards to include BIM technology. Indiana University and Penn State University have both issued BIM standards on all campus projects of 5 Million or more of construction costs.

Other organisations like the National BIM Standard-United States® (NBIMS-US™) by the National Institute of Building Sciences, 2015 (NBIMS-US) provides consensus based standards through referencing existing standards, documenting information exchanges and delivering best business

practices for the entire built environment. The buildingSMART alliance is among the list of the technology programs. Other organisations leading the way towards national BIM adoption include:

- The CAD BIM Technology Center: According to the center's website, the center sets standards, promotes system integrations and provide assistance for the installation, training, operation and maintenance of BIM based systems.
- The Naval Facilities Engineering Command Building Information Management and Modeling: The NAVY claims to be the first Federal Government Agency to leverage BIM with the goal of digital management of facilities. Their focus has been on standardised delivery of digitised facility data, 2D drawings and 3D parametric models.
- The Air Force Building Information Modeling for MILCon Transformation: The agency under the USACE ECB 2018-7 Advanced Modeling Requirements on USACE Projects --Category: Directive and Policy sets the requirements for the advanced modeling requirements on all USACE projects. The policy states as one criteria: All Army and Air Force Civil Engineer Center (AFCEC) (ref d) design and/or construction projects, regardless of funding source or acquisition method, must utilise advanced modeling to generate design, construction, record, and space utilisation drawings deliverables.
- Department of Veterans Affairs: The agency provides BIM standards covering all aspects of project submission including items like the Room data sheets and drawing deliverable requirements.

CONCLUSION

As reported in previous years it is clear from the responses received that BIM education and BIM awareness/uptake is still at different levels of implementation across the globe.

Most countries/regions are reporting BIM education being provided to Architecture Engineering and Construction (AEC) students by their higher education and technical training institutions. As previously reported in general, the number of courses being offered is not significantly increasing year on year. This may indicate that the quantity of courses offering some form of BIM education may be reaching its saturation point in many countries/regions.

However, many countries/regions are reporting that the content of such courses is now being expanded to include more sophisticated elements of BIM, such as BIM for FM, costing, openBIM information exchange, BIM management, etc. as opposed to simple modelling and use of specific BIM software. This change to course content is consistent with increasing public and private demand as organisations realise the benefits of BIM beyond the design stage, but also for procurement, construction management, operation, and maintenance stages of the assets.

Most countries' higher education institutions are including structured BIM education within the syllabus of their AEC courses, at both an undergraduate and postgraduate level. Countries/regions such as Sweden and Switzerland are providing a multidisciplinary approach to BIM education. Many vocational education institutions are also providing BIM education to the industry's workforce. This is equally important to ensure that BIM practitioners are well equipped for changes in an evolving workspace.

Studies carried out by some of the countries/regions indicate that there are many challenges being faced by educators in regards to incorporating BIM into the curricula, such as the knowledge base/skills of educators, resources available - both financial and physical - and a simple resistance to change by educational institutions and their educators. A lack of structured BIM educational coursework, consistent across educational institutions, has also been reported as a barrier to the progression of BIM education.

Many countries/regions continue to discuss the importance of the buildingSMART International Professional Certification programme and how that is being implemented within their respective countries/regions. Other certification schemes that validate BIM knowledge continue to be provided, with countries/regions such as Australia, Canada, China, Finland, France, Germany, Hong Kong, Norway, South Africa, Singapore, Switzerland, Taiwan, UK and USA having all reported the existence or development of such schemes. Moreover, accreditation of the BIM training programs provided by higher education institutions is also gathering pace.

BIM has generally been widely adopted in many countries/regions. However, this is not strictly a global trend and in some countries/regions such as Czech Republic, Germany, Africa and South Africa, uptake has been slow. The cost of BIM implementation and lack of standards are among the reasons for the slow adoption.

It is also apparent that the focus and progress on BIM education has been suppressed by the global pandemic with government bodies singularly focused on the social impacts relating to the pandemic. However, with that said, a key positive has emerged from the past two years which has been the necessity to adapt onto a virtual platform to maintain the communication flow. Hence allowing education in general across the globe to thrive and not lose momentum in these difficult times.

In general, the provision of BIM education in each country/region is being sufficiently covered in terms of the basics and the handson technical skills of using particular BIM software packages. The challenge in many countries/regions appears to be in taking this further, to fully prepare students for the digital world in which they will operate and to provide them with the BIM skills that their industry will demand in the future. This results in the education field having a gap to be filled in reaching out to companies/industry and defining programs that will benefit practical skills of practitioners, as well as, theoretical knowledge of researchers and educators.

Finally, as observed in previous years, liaison and partnership between education providers and industry is improving, which should ultimately lead to a coordinated solution of the training being provided, meeting the needs of industry.

CONTRIBUTORS

NATSPEC and ICIS would like to thank contributors, past and present, who have provided input to this report for their respective countries/regions. Note: Where more than one individual from any particular organisation has provided input, the name of the organisation has simply been listed once.

Current contributors

- Mario Mauer BIM Forum Argentina (Argentina)
- Deakin University (Australia)
- Planbim (Chile)
- China BIM Union (China)
- Shenzhen Municipal Design & Research Institute Co. Ltd. (China)
- University of Nottingham Ningbo (China)
- Zhejiang Huiyuan Engineering Data Technology Co., Ltd. (China)
- Daniel Cihelka URS (Czech Republic)
- Meeri Smolander Building Smart Finland (Finland)
- Sunil Suwal Metropolia University of Applied Science (Finland)
- Timo Lehtoviita LAB University of Applied Sciences (Finland)
- buildingSMART France (France)
- Construction Industry Council (Hong Kong)
- BCA Academy Building and Construction Authority BCA (Singapore)
- Gustav Jansson Luleå University of Technology (Sweden)
- Nina Andersson Jönköping University (Sweden)
- Johannes Herold Swiss National Agency for Construction Nationalization CRB (Switzerland)
- Shang-Hsien (Patrick) Hsieh National Taiwan University (Taiwan)
- Gilles Letourneau Deltek (United States)

Past contributors

- Vaughan Harris BIM Institute South Africa (Africa and South Africa)
- Jennifer Macdonald buildingSMART Australia (Australia)
- Dr. Ronald Webber Central Queensland University (Australia)
- Dr. Saeed Banihashemi University of Canberra (Australia)
- buildingSMART Canada (Canada)
- Canada BIM Council (Canada)
- David Watson Digicon Information Inc. (Canada)
- Petr Vokoun BIM Project (Czech Republic)
- Päivi Jäväjä Metropolia University of Applied Sciences (Finland)
- Rakennustieto (Finland)
- Tommi Arola buildingSMART Finland (Finland)
- Emmanuel Natchitz ESITC (France)
- Benjamin Mombree Planen-Bauen 4.0 (Germany)
- Institute of International Harmonization for Building and Housing iibh (Japan)
- Masaki Muto Building Research Institute (Japan)
- Martijn Carlier BIM Loket (Netherlands)
- Radboud Baayen Stabu (Netherlands)
- Masterspec (New Zealand)
- buildingSMART Norway (Norway)
- Geir Johansen Norconsult (Norway)

- Digitalisation, Built Environment Research and Innovation Institute Building and Construction Authority - BCA (Singapore)
- Chris Allen Nelson Mandela University (South Africa)
- Mark Grant Construction Communication Network (Pty) Limited (South Africa)
- Niclas Andersson Malmö University (Sweden)
- BIM Academic Forum (United Kingdom)
- Graham Paterson Letsbuildigital (United Kingdom)
- Jason Underwood University of Salford (United Kingdom)
- John Gelder NBS (United Kingdom)
- Rob Garvey University of Westminster (United Kingdom)
- Christopher Bushnell Arcom (United States)
- James Robertson Robertson Sherwood (United States)