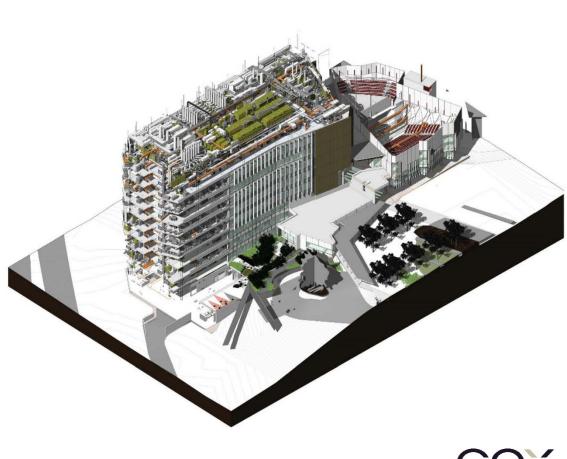

NATSPEC China BIM Union BIM Ideology in Computational Design - Architecture Alex Leese - Cox Architecture

Case Study of the Anna Meares Velodrome and the National Maritime Museum of China

BIM at Cox BIM through computational design National Maritime Museum of China Anna Meares Velodrome Questions


BIM at Cox

Employs best practice standards across national offices as a minimum as internal QA process

Investment in innovation, research and development

Design driven outcomes

Higher levels of BIM currently client or project driven process – could do better!

BIM through Computational Design

Single source of data, both information and geometric

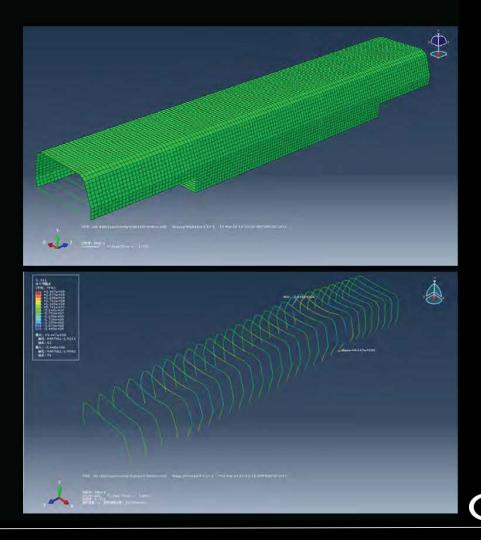
Mathematically controlled to reduce manual error

Code is backwards auditable

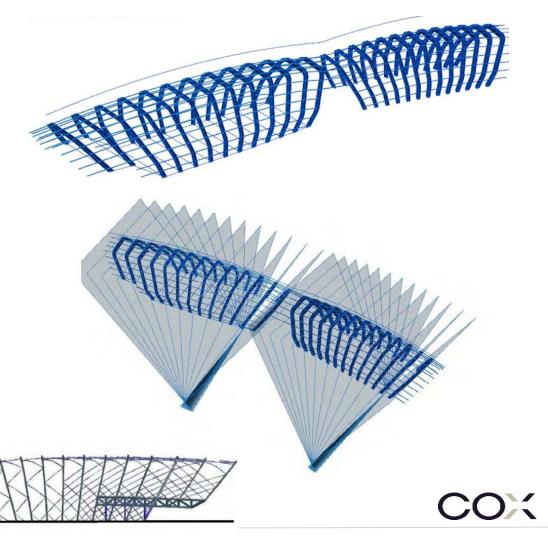
Source information can pass through multiple stages and uses

National Maritime Museum of China

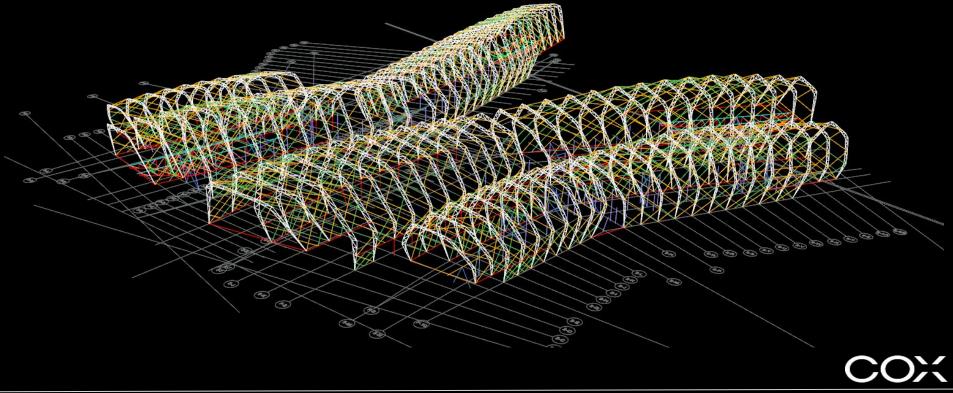
Managing Complexity – BIM procedures, structural and façade development

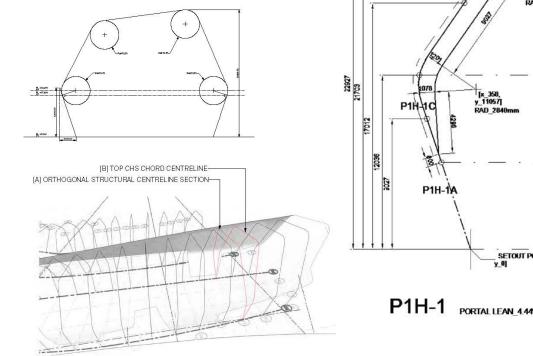


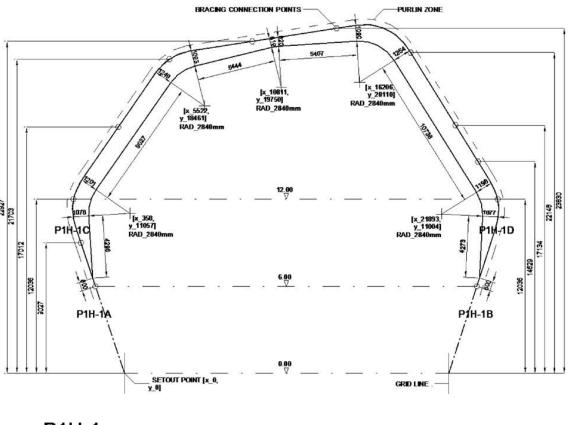
Structural Development Portal frame development Bracing logic


Communication through models

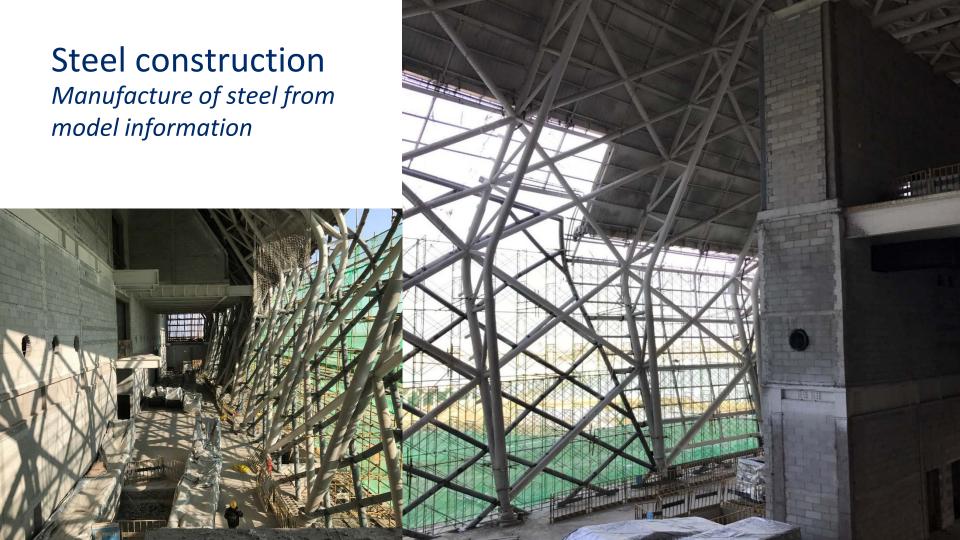
Early engineering analysis was not coordinated through software packages or defined BIM workflow.


A better system was required to translate design intent through all packages accurately


The defining geometry for the frames was established using angled planes that intersected the façade forms. Bracing logic written in parametrically with a structural logic for eroding the fill bracing to create the final bracing pattern



The final forms communicated with structural centre lines



Automated documentation of portal frames – 2D project requirement

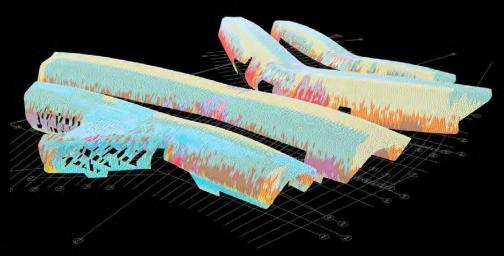
PORTAL LEAN 4.44° CHS DIAMETER 400mm

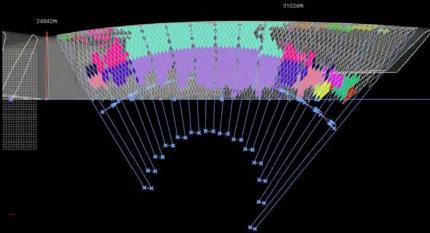
Portal construction

Formed portal sheaths in GRC from the model information

Façade Development

Development of simple panel system that responds to an organic form

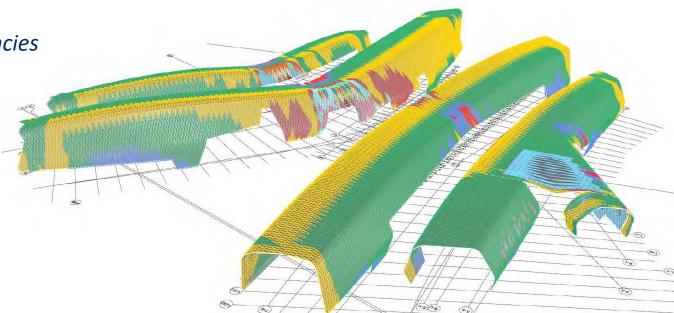

Development of code that allows great flexibility and accuracy


Standardisation and managing tolerance within building systems

Standardisation

Controlling the degree of standardisation through distortion of panel grids

PANEL TYPE		j	PANEL HEIGHT		PANEL	H	ALL 1			HALL 2	1	,	HALL 3			AALL 4		TOTAL	% OF TOTAL
and the second second				A SALE OF	P1	P7	P3	P1	P7	P3	P1	P2	P3	PI	PZ	P3			
A.	- 117		1764	759	0	Ø	o	0	0	0	0	0	đ	0	0	0	a	0%	
				809	0		0			0			0			0	9	0%	
			1777	859	•		0			0			0			4	121	010	
		-0.0	1762	909	0		٥			0			1			11	284	19	
				959	22		3			2			120			304	785	2%	
			1792	1009	109		356	201	314	217	615	850	230		581	497	4240	10%	
g		0	1796	1059	3827	1375	255	4750	2027	361	5151	987	177	2985	1047	162	23104	53%	
		-14	1799	1109	1419	407	102	4581	581	38	3805		29	1224	381	53	13157	-30%	
		10	1803	1159	89		o	122		2	343	384	18	88		o	1234	39	
		10	1806	1209	4		0			0			.3			- 0	229	19	
		17	1809	1259	0		٥	38		0	28			56		0	138	0%	
		11	1811	1309	0		7		23	0	38		0			0	105	0%	
		-11	1814	1359	0		0			o			0			a	78	0%	
			1816	1409	σ.		3			0	26		0			ø	42	05	
			1818	1459	0		0			0			0			0	16	050	
		=	1820	1509	Ō.		0			0			0			0	29	0%	
			1822	1559	0		c			0			G			0		.0%	
q		24	1824	1609	o.		0			ō			ø			0		056	
	10		1829	1759	0	ð	0	0	0	0	Q	6	0	Ð	0	0	6	010	
SUB TOTALS					5470	2074	726	9875	3051	620	10154	3139	579	4674	2184	1031	43587		
TOTALS						8270			13546	- 1	t j	13872			7899		43587	100%	

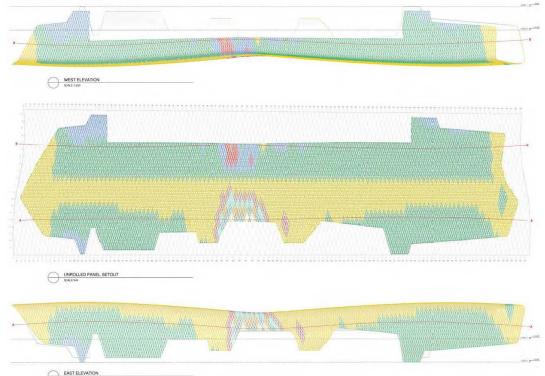

<u>COX</u>

Panel Analysis

Algorithms determined façade panelling efficiencies

Aim to limit number of unique panel types

Minimise number of bespoke panel types requiring curvature

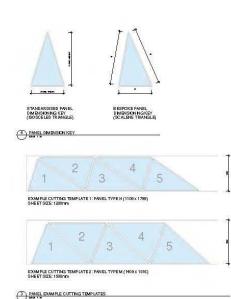


Façade Documentation

Development of flat panel location plans that are automatically generated from code to ensure accuracy

Application of unique panel codes which relate to panel schedules

Automated application of colour to define types



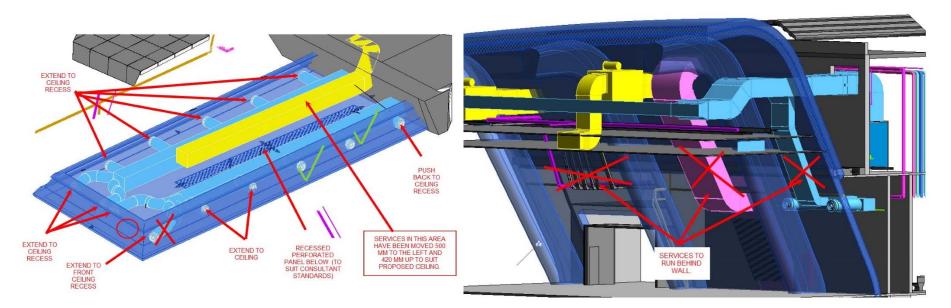
Panel documentation

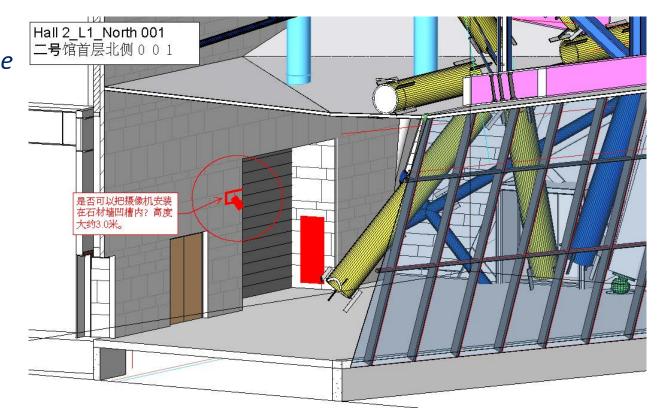
Code developed to enable whole building panel dimensions to generate from different originating sheet dimensions

N OF TOTAL	TOTAL		MALL 4			HALL 3		HALL S			HALL 1		PANEL:	PANEL	1.1	PANEL TYPE	
		12	P2 -	11	9	11	Ħ	81:	82	. 10	#1	92	eri.				
				A. 81	- 1	1.41		- 1			- 1			194	- F#		
					- 24			- 1	- R)	3	- 1			1.146	128		
1	223		- 65	- 18	. 4	洪	- 4	- 1			- 4	*	- N.	- 14	1.20		
	. 284	. 11	- 35	45	- 4	80 28	10	- 14		- 2	1	- 1	A.	1.00.1	1985		
				1.16	100	-28	. 41	1.7		1.80		-42	22	1.898	120		
	4745	- 40	587	int	.230	455		257	214	284	559	- (8)	.108	1006	170	100	*
	27164	110	1047	2640	177	10	1018	- 341	0425	\$722	251	rate	1427	1058	126		
	0157	- 15	581	1724	- 24	122	848	- 24	581	401	102	+17	1418.	.109	170	1000	
	1234	1.14	- A.	44	14	34	241	1.1	83.	122	- 14	126	1.66	1186	140	10.00	
	125	- 4	- 4		1.2	14	-90	- 4	- 46	38	- 4			1228	142	10.00	1
	100	1.1	1.4	100	- 14	.78-	1.00	- 4	1.181	- 10-		18.	- 10	1258	149	10.1	
	10			× Y		1.20	- 14	- 1	100	4.0		14		1046	. 1997		
1 1 1	0			- 28		1.2		- 1	100	12			1.1	1208	nim.		1
		- 1		1.0	- 18			- 4	10	1.0	- 4		1.4	1428	208	1.00	
	18		1.6		- 6	1.2		- 4	- W.				1.4	1458	248	111.00	
	28	- 6	1.0	1.	- 14			- 4			1		1.00	1398	1404	10.00	
	- 3				- 10	1.41	1.141	- 4	.0		4	- 36		1558	642	10.00	
1.1					1.00			- 4	16				1.4	-1886	1404	11.14	
				1	1		- 3		0)			1		1756	148	10.00	1 C
	011	-	118	-	170	ini	-	24	-100	-	-778	1841	5478				ROB TOTALS
100	41557		TRES			13872			126.4			8270		TOTALE			

PANEL SCHEDULE - STANDARD TYPES

411 mainte	and the second	Trans					
A	h S. A. B. S. M.	1	4.8. 8.8.8.	A.A. X. M.M.	L.R	1	L.K
.			1	-	1910,000		-
				1991 Construction of the c			


Cladding Construction Manufacture of cladding panels from model and schedule information



Communication through models

Navisworks model and mark up exchange

Detailed coordination and development of the services strategy was made through the transfer of models

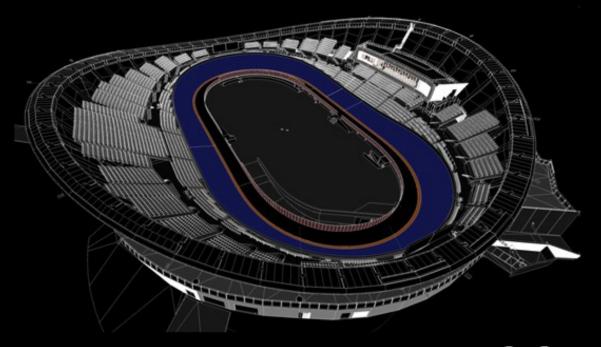
BIM awards!

TADI and Cox won the following awards in the BIM field

- AEC excellence awards (AU 2016)
- Gold Award for Structure and Design
- Design Integration (RTC 2015)
- Design Presentation (RTC 2105)

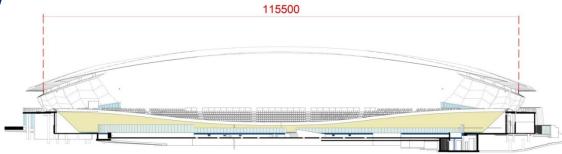
Finalist

Anna Meares Velodrome


Design through parametric modelling

Project Brief Overview

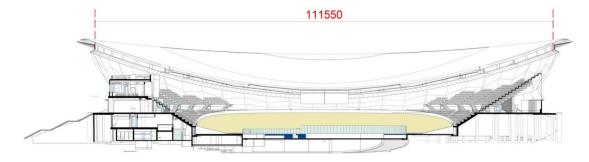
Development of the roof forms


Development of the walls and cladding

Delivery of information for production

Project Brief Overview

Permanent seating for 1500 spectators with provision for temporary seating capacity of 4000

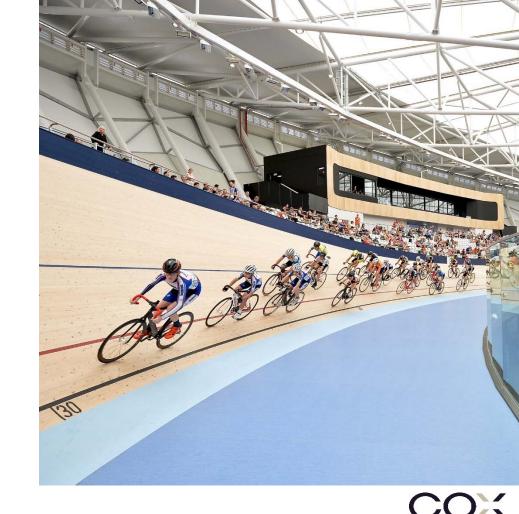


CROSS SECTION – TRACK BENDS

Fully enclosed stadium with no sight line restrictions from structure

Elevated function and judging space

CROSS SECTION – FUNCTION ROOM AND SEATING


Project Brief Overview

Large span in two directions

Form provides height for temporary seating at the optimum areas along the straights

Low roof at bends to reduce building footprint and control drainage

Sightlines to be min C60

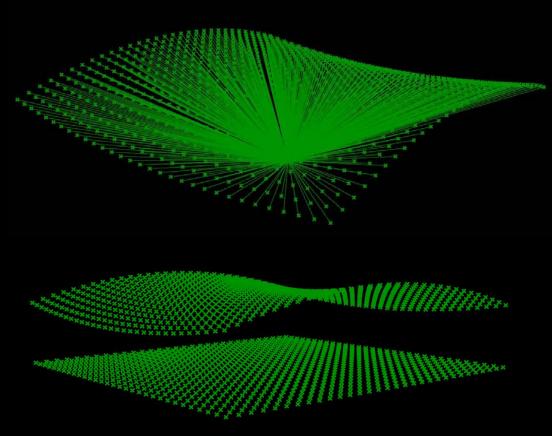
Development of the roof forms

Form finding through Grasshopper

Design Flexibility

Technical Analysis

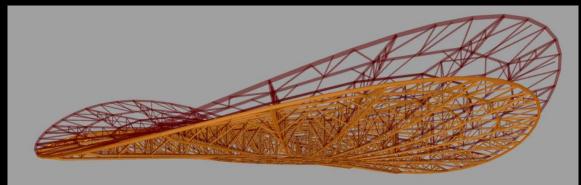
Structural Coordination

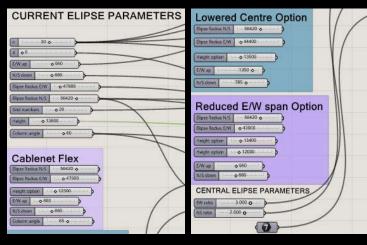

Design Auditing

Form finding through Grasshopper

Hyperbolic Parabola roof (pringle chip) form is generated mathematically from a single center point. Being a mathematical representation the form remains pure and accurate.

 $[z=ax^2-by^2]$

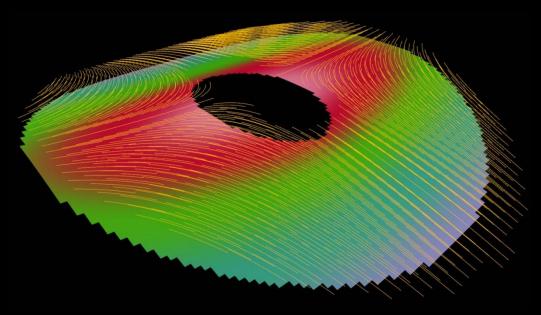


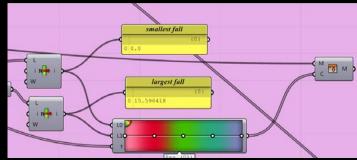

Design Flexibility

Using parametric work flow allows great flexibility throughout the development of the design

Immediate visual feedback of

In this model control ratios are used to adjust the flex of the form in both directions that allowed studies of form generated by the constraints of different cladding materials

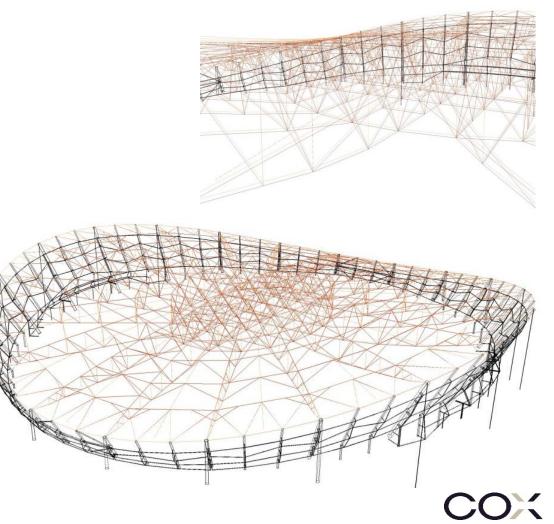




Technical Analysis

Roof curvature analysis allowed the building form to be adjusted to suit the properties of different roofing systems. These options could be quickly assessed for cost to prove efficiency

Additionally rainwater paths were created to establish the optimal location for gutter systems

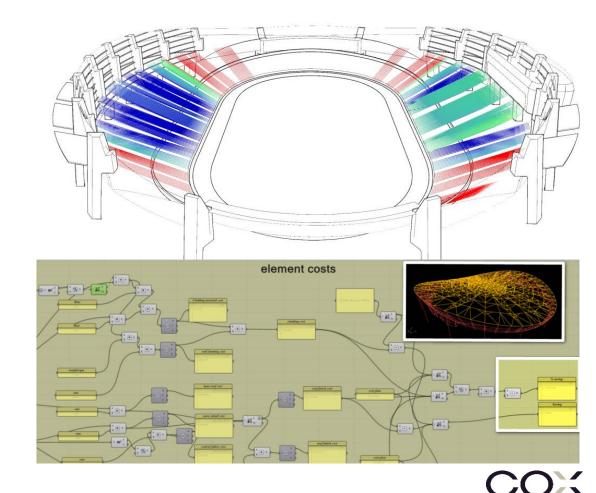


<u>COX</u>

Structural Coordination

Controlling structural geometry through centreline modelling Single Source information

Application of pre-camber form for shop drawing coordination



Design Auditing

Structural constraints can be added into the code to maintain relationships when design options are being explored.

Definition of sight lines

Quantity analysis can be built into the model such that instant quantity comparisons can be made with the benefit of the visual forms.

Developing the facade

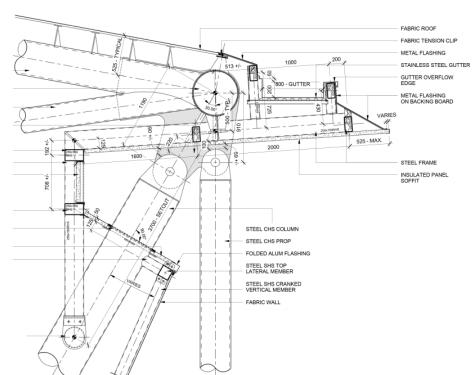
Fabric form finding

Eaves design

Computational design process

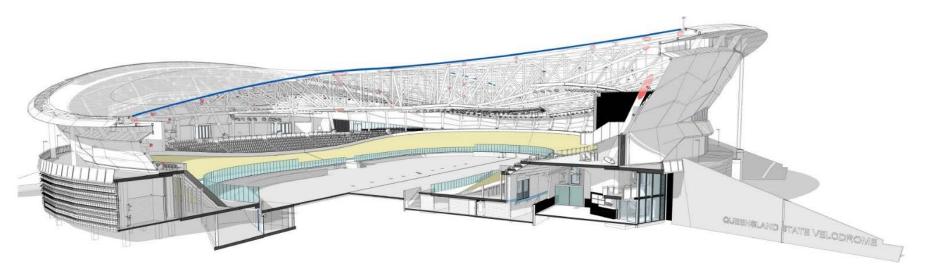
Fabric form finding

Basic form inspired by track


Utilising nature of material

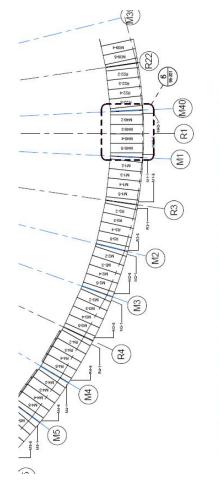
Straight section steel to form twisted fabric shapes

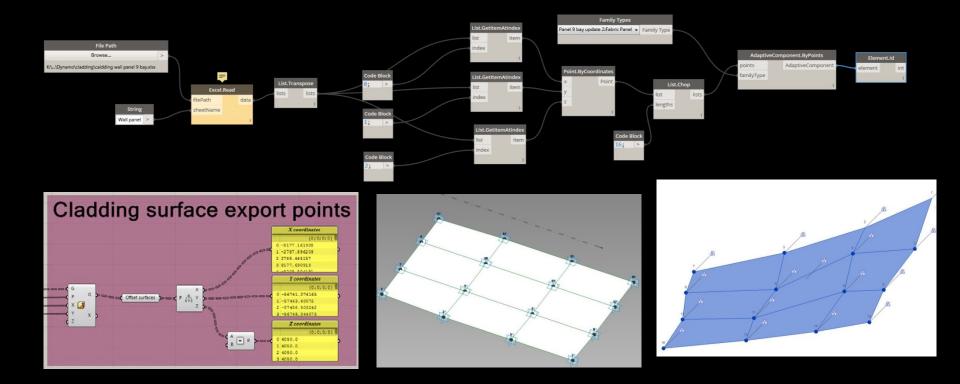
Eaves design Prefabricated design system Hyperbolic shape with flat planes


BIM integration

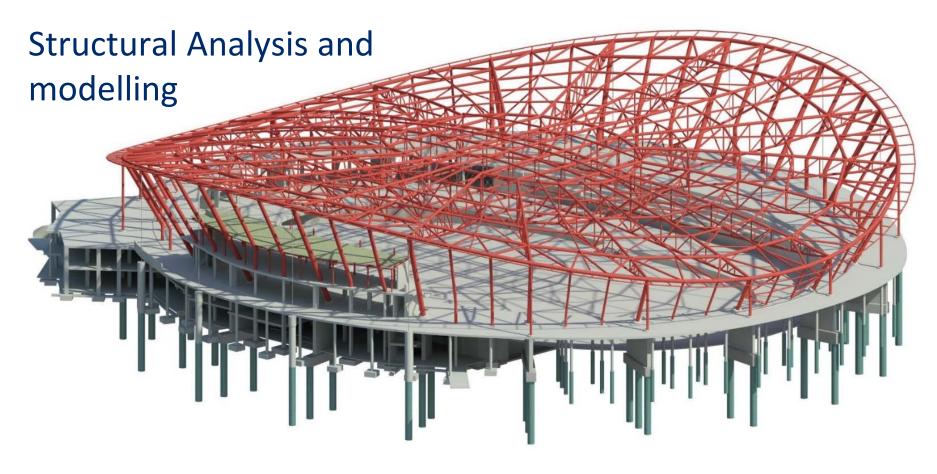
Documentation in Revit

Wire frame for structural analysis and documentation


Integration into fabrication drafting

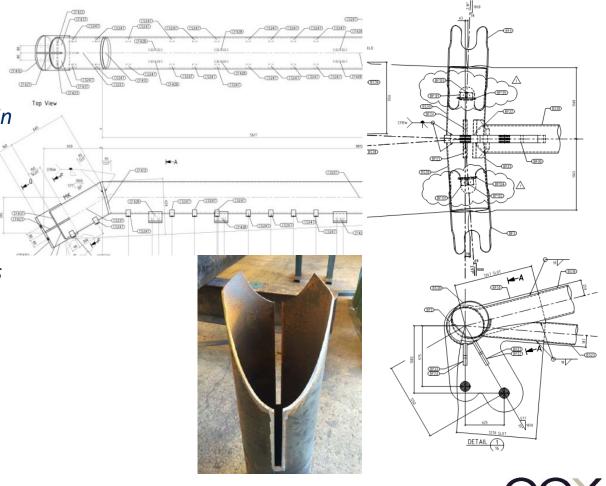


Data directly to Revit


Geometric data generated from grasshopper code can be translated into Revit geometry with associated data from a single source.

Mark	Length A	Length B	Length C	Length D	Mid Pane Joint	
R17-1	794	4143	997	4099		
R17-2	1200	4180	1201	4143		
R17-3	1200	4193	1200	4180		
R17-4	1200	4180	1200	4193	2949-R17	
R17-5	1200	4143	1201	4180		
R17-6	745	4101	1005	4143	-	
R18-1	713	4141	994	4101		
R18-2	1200	4178	1201	4141		
R18-3	1200	4190	1200	4178		
R18-4	1200	4178	1200	4190	2958-R18	
R18-5	1200	4142	1201	4178	2000-1110	
R18-6	801	4099	981	4142		
R19-1	645	4133	899	4101		
R19-2	1200	4166	1200	4133		
R19-3	1200	4177	1200	4166		
R19-4	1200	4166	1200	4177	2882-R19	
R19-5	1200	4133	1200	4166	2002-1113	
R19-6	696	4099	892	4133		
R20-1	600	4129	751	4101		
R20-2	1200	4160	1200	4129		
R20-3	1200	4169	1200	4160	8	
R20-4	1200	4157	1200	4169	2751-R20	
R20-5	1200	4123	1200	4157	27514120	
R20-6	488	4099	767	4123		
R21-1	530	4126	623	4101		
R21-2	1200	4159	1200	4126	-	
R21-2	1200	4168	1200	4159	-	
R21-4	1200	4154	1200	4168	2623-R21	
R21-5	1200	4117	1200	4154	2023-121	
R21-5	335	4099	652	4117		
R22-1	411	4099	567	4101		
R22-1	1200	4161	1201	4124	-	
R22-2	1200	4173	1201	4161		
R22-3	1200	4175	1200	4101	2542-R22	
R22-4	1200	4119	1200	4173	2.342-1122	
R22-5	335	4099	578	4159		

Conversion of cladding panel into Revit geometry using 16 point adaptive component family



\bigcirc

Steel Fabrication

Centre line data used directly in fabrication drawing packages with structural sizing.

Joint design developed in workshops or adaptive models

Final Images National Maritime Museum of China

Questions

BIM Ideology in Computational Design - Architecture Alex Leese Cox Architecture